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Foreword
The adoption of intensive production systems for poultry production has resulted in remarkable
increases in productive efficiency during the last thirty years.  These changes have arisen from
intensified genetic selection, as well as improvements in nutrition, management and disease treatment
and prevention.  Although all these factors have had a positive impact on animal welfare, intensive
confinement systems also impose costs on birds.

Of increasing concern to the egg industry is the growing public perception that laying birds exist in a
state of chronic stress for the duration of their productive life.  In view of the public concern of the
welfare issues associated with egg production it is important to try to identify or define what is a
contented bird exposed to minimum stress.

In this project, a novel and practical, non-invasive means of monitoring the stress status of hens by
measuring stress hormone concentrations in eggs was developed.  In a series of studies the
relationship between circulating concentrations of stress hormones, and their sequestering into egg
albumen was determined under normal conditions and experimentally induced stress.

This two year project was funded by industry revenue from the Egg Program which is matched by
funds provided by the Federal Government.

This report, a new addition to RIRDC’s diverse range of over 700 research publications, forms part
of our  Egg R & D program,which aims to initiate, support and manage R & D to meet the
requirements of a profitable and responsible Australian egg industry.

Most of our publications are available for viewing, downloading or purchasing online through our
website:

  downloads at www.rirdc.gov.au/reports/Index.htm
  purchases at www.rirdc.gov.au/eshop

Peter Core
Managing Director
Rural Industries Research and Development Corporation

http://www.rirdc.gov.au/reports/Index.htm
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Executive Summary
The egg industry faces continued criticism of the ethics of husbandry practices used in egg

production especially the welfare of hens kept in cages. Assessment of hen welfare is difficult because
it encompasses many factors. Measurements based on health, production, behaviour and physiology
have been made. These measurements are based on some level of change and a major difficulty is how
much change constitutes a risk to the hen’s welfare?

Physiological changes can be a sensitive measure of welfare as these relate to changes in the
stress-axis. Stress describes the way an organism responds to a stressful stimuli in an endeavor to
maintain homeostasis. Stressors are events perceived as a real or anticipated threat which elicit
responses and these depend on the severity and duration of the stimuli. Many of the responses to
noxious stimuli highlight the importance of the adrenal gland in regulating physiological changes. As
a general adaptive response corticosterone increases gluconeogenesis and blood glucose, catabolism of
muscle tissue, increases fatness and depresses immunity. Short–term responses to stress result in
catecholamine release from the adrenal gland.

There are inherent difficulties with the interpretation of circulating hormone concentrations
because of intrinsic patterns and changes occurring in response to sampling. Non-invasive techniques
of measuring levels of stress hormones would reduce these problems. Hormone levels in the egg could
provide a non-invasive method of measuring stress levels in hens and prove helpful in identifying
conditions responsible for poor welfare. The gradual accumulation of albumen over six hours during
egg formation potentially provides an accurate reflection of circulating hormone levels over this time.
The overall objective of the project was to develop procedures for measuring stress hormones in egg
albumen and then assess whether albumen levels of these hormones reflect stress experienced by
laying hens.

As part of the project a comprehensive literature review was completed entitled ‘Stress, hen
husbandry and welfare’ (see Appendix 1). Assays to determine corticosterone and catecholamines
(adrenaline and noradrenaline) in albumen samples have been developed and validated. The
corticosterone assay is a competitive protein binding radioimmunoassay using a specific antiserum
raised against corticosterone. In essence it is a one step extraction procedure followed by an overnight
incubation with antiserum and radio-labelled corticosterone and charcoal separation of free label. The
catecholamine assay is more complicated requiring lengthy extraction procedures and then
determination of catecholamines by HPLC separation and electrochemical detection.

Once the assays were developed the next objective was to determine the relationship between
plasma corticosterone and catecholamine levels and albumen levels. In these studies attempts were
made to modify plasma hormone levels by infusing or injecting the hormones subcutaneously and
measuring the levels in egg albumen. As detailed in the full report it was not possible to determine the
relationship between plasma and albumen hormone levels in the injection studies.

The final objective of the project was to assess what effect known stressors have on albumen
stress-hormone levels. In the short-term, increasing housing temperature from 180 C to 320 C increased
egg albumen corticosterone concentrations on some days. Long-term exposure to 300 C increased
albumen corticosterone concentration compared to hens held at 180 C. In both studies there were no
effects on adrenaline levels. Handling in various forms is stressful to hens. When hens were handled
there was an increase in egg albumen corticosterone levels especially during early episodes of
handling. It is possible hens adjust to the handling procedures and differences in corticosterone levels
abate. While handling is known to stimulate catecholamine release there were no differences in
albumen catecholamine levels following handling. Moving hens from one cage to another increases
egg albumen corticosterone concentration although the differences last for only a short time.
Increasing cage density increased albumen corticosterone levels but again it appears hens adjust to this
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change in about 7 days as no differences in albumen corticosterone were seen after this time. Changing
cages or increasing the density had no effect on adrenaline levels in albumen.

During the course of the studies detailed in this report:

i) A literature review of stress in hens was prepared.
ii) Assays to measure corticosterone and catecholamines in egg albumen were established.
iii) The relationships between corticosterone and catecholamine in plasma and egg albumen were

evaluated.
iv) In hens the effects of heat, handling and cage density on egg albumen corticosterone and

catecholamine concentrations were evaluated.

From the limited number of bird studies conducted during the 2 years of the project it appears
that the corticosterone but not catecholamine concentrations in egg albumen can provide a non-
invasive measure of stress in hens.



1

1. Introduction
An understanding of the relationship between animal production characteristics and stress is

important in issues of animal welfare and animals rights. This has been comprehensively reviewed by
Downing and Bryden (1999) and the following relies predominantly on that paper. As the keeping of
poultry progressed from small flocks with the products for home consumption, to large commercial
enterprises, there were major improvements in production traits. Increasing stocking density could
reduce costs and so hens were housed in single or multiple cages. As this occurred there was a real or
perceived increase in behavioral problems associated with the housing of layers.

1.1. Hen welfare

Production systems should provide hens with:

freedom from hunger and thirst

thermal and physical comfort

freedom from pain and disease

freedom from fear and distress

sufficient space to exercise

The last of these five freedoms (see Downing and Bryden, 1999) is presently a very
controversial tropic. Intensive farming practices often deprive animals’ access to conditions that
allow for the performance of normal behavior. It has been considered that such deprivation leads to
stress and a decline in the animals well being.

An interest in welfare can stem from  numerous factors and include economics, culture,
philosophical attitudes, scientific, aesthetics, knowledge and religion (Craig and Swanson, 1994).
Attitudes to animal welfare vary greatly. Kellert (1988) found that the attitude had a lot to do with the
relationship that different professions had with animals. While there are many possible definitions
according to the individual interest, perhaps an appropriate general definition suitable to all interests
is that of Hurnik (1988). "Animal wellbeing (welfare) is a state or condition of physical and
psychological harmony between the organism and its surroundings characterized by the absence of
deprivation, aversive stimulation, over-stimulation or any other imposed condition which adversely
affects health and productivity of the organism".

An assessment of welfare is difficult because it encompasses many factors that have input to
the final state of the animal. It is a sum of all the factors that impinge on the animal. Most definitions
of welfare have been based on physiological assessments and measurements based on health,
production, behaviour and physiology (Mench and van Tienhoven, 1986; Broom, 1991). Assessments
of welfare rely on some measure of change and change itself may not be a measure of stress as
animal’s behaviour and physiology changes to maintain homeostasis. Any parameter provides only
prima face evidence that the animal’s welfare is compromised. The real question becomes how much
change signifies a risk to welfare?

1.2. Stress and stress hormones

Physiology and behaviour can be sensitive measures of welfare but with limitations.
Physiological responses are related to changes in the stress-axis. The results are elevated heart rate,
increased plasma corticosterone and catecholamine levels, adrenal hypertrophy and atrophy,
immunosuppression, changes in growth and reproductive hormones and neurochemical changes
(Freeman and Manning, 1976; Seigel, 1980). The difficulty with such measures is what is normal?
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An increase in stress hormones could be beneficial or harmful depending on the duration and level of
responses. One major difficulty is that often measurements are made as point samples and this can
lead to misleading interpretations of data.

Stress as a term describes the way an organism responds to environmental stimuli it perceives as
a threat, real or anticipated, to its survival or well being (Harvey et al., 1984). A simplistic attempt to
categorize the stress response, has divided it into a reflex, 'alarm or emergency reaction" component,
principally mediated by adrenomedullary activation, followed by a period of adaptation, accompanied
by increased adrenal function, then by a stage of exhaustion which results in death if adaptation fails
(Selye, 1950).

Stressors are events internal or external that elicit a response by the hen aimed at maintaining
homeostasis. The ability to respond depends on the severity of the stress and the inherent ability of the
hen to respond. Responses can be specific or non-specific (generalized). While exposure to a stress
evokes a range of physiological responses many highlight the significance of the adrenal gland in these
responses.

The adrenal gland provides an example of the co-operation existing between the endocrine,
nervous and immune systems in the control of a variety of functions (Ganong, 1963; Siegel, 1985;
Hendricks et al., 1991). While there is no division of the avian adrenal gland into distinct regions as in
mammals, it is still appropriate to consider the hormones synthesized and secreted from the adrenal
gland as two groups. The cortical hormones, those secreted by the cortical tissue, and the medullary
hormones, those secreted by the chromaffin cells.

The hormones of the cortical tissue are mainly steroids and are divided into the
glucocorticoids and the mineralocorticoids. For mammal’s corticosterone, cortisol, cortisone and 11-
dehydrocorticosterone are the principal glucocorticoids while 11-deoxycorticosterone, 17-hydroxy-
11-deoxycorticosterone and aldosterone are the principal mineralocorticoids. The situation is less
clear with hens where the main steroids are corticosterone, cortisol, cortisone and aldosterone with
the principle glucocorticoid being corticosterone. The regulation of corticosterone release involves a
sequence of events starting with the release of hypothalamic factors, then ACTH
(Adrenocorticotrophic hormone) from the pituitary and eventually corticosterone from the adrenal
gland.

The chromaffin cells, homologous to neural tissue, contain adrenaline and noradrenaline.
Stimulation of the sympathetic nervous system results in release of catecholamines from the
chromaffin cells. The response is apparently unrelated to the severity of the stress imposed (Lahiri, et
al., 1982). These hormones are released in high concentration in a matter of seconds following
perception of a noxious stimulus.

As part of the general adaptive response to stress, corticosterone increases gluconeogenesis
and blood glucose, causes catabolism of muscle tissue and increases fatness and decreases
immunological function. The last of these effects result in increased susceptibility to diseases and this
is especially important in intensive housing systems. As part of the short-term ‘flight or fight’
response of hens to acute stress, the catecholamines are released from the adrenal gland. The essential
function of the catecholamines is to mobilise energy reserves to assist the hen to evade the stressor.



3

1.3. Stress measurement

Of increasing concern to the egg industry is the growing public perception that the laying hen
exists in a state of chronic stress for the duration of its productive life. At present there are no practical
means of assessing stress in hens other than behavioral observations, which do not provide accurate
determinations of well being. The consequences of deprivation or over-stimulation are often quite
subtle and difficult to observe and quantify (Ewbank, 1988). Animal behaviouralists have made efforts
to improve methods of assessing behavioural needs of hens and to determine how particular
production systems interact to provide or deprive hens of these needs (Hughes and Duncan, 1988).
However good these determinations are, they have limitations. What is required is an entirely
objective, quantifiable indicator which unambiguously reflects a hens well being.

Not much is known about the physiological levels of the “stress” hormones in the hen. There
are difficulties with the interpretation of circulating concentrations of hormones because of diurnal
patterns and the rapid changes that occur in response to handling and blood sampling. For some
species, hormone levels are assessed in milk and saliva. It is apparent that the secretory products of
animals contain a wide range of growth factors and hormones which vary in concentration according
to the physiological status of the animal (Prosser et al., 1991). Using non-invasive means of
measuring levels of stress hormones has reduced these problems. Saliva contains cortisol among
other hormones and the concentration is closely related to the degree of stress (Fell et al., 1985).

Could the egg provide a non-invasive means of measuring stress levels in hens? Many of the
stresses to which a hen is subjected result in activation of the HPA-axis. Final consequences being
changes in plasma and tissue levels of glucocorticoids and catecholamines, secreted by the adrenal
gland (Harbutz and Lightman, 1992). Non-invasive measures could be helpful in identifying
conditions responsible for poor welfare. Solomon (1991) has stated that shell quality is a very good
indicator of a hen’s harmony with its environment. Misshapen eggs or ones with calcium carbonate
deposits are probably evidence of disturbances to the hen. Microscopic observations of shell changes
could be useful indicators of hen health. Diffusion of plasma constituents into egg white has received
little attention but as the degradative metabolites of vitamin D are found in albumen (Fraser and
Emtage, 1976), it is likely that other plasma solutes are also sequested into the albumen. The gradual
accumulation of albumen over 6 hours during egg formation potentially provides a very accurate and
integrated reflection of circulating hormones over this period. Determination of stress hormone levels
in egg albumen could provide a non-invasive measure of acute and chronic stress in hens.

Management conditions influence plasma corticosterone levels (Edens et al., 1982; Mashlay
et al., 1984; Koelkebeck and Cain, 1984; Gibson et al., 1986). Higher plasma corticosteroid
concentrations have been reported for hens housed in floor pens compared to cages (Edens et al.,
1982; Craig et al., 1985; Barnett et al., 1997a & b). Koelkebeck & Craig, (1984) found a similar
pattern of elevated plasma corticosterone in floor-housed hens compared to either cage- or range-
housed hens. Of three different housing systems, cages, strawyards and free-range, hens in cages had
the highest circulating plasma corticosterone concentrations as reported by Gibson and colleagues
(1986). These discrepancies highlight the need for further evaluation of the effects of housing-type
on physiological measures of stress.

Alterations in floor space or 'personal space' can elevate plasma corticosterone (Mashaly et
al., 1984; Compton et al., 1981). Corticosterone levels are elevated when the space allowance is
below 400 cm2/bird (Craig et al., 1986). Housing density appears to strongly influence plasma
corticosterone in different housing systems (Craig et al., 1986). The effects of space allowance can
be influenced by temperature (Edens et al., 1982). When space allocation is adequate there appears to
be no difference with individual or group housing (Koelebeck and Cain, 1984). Short term stressors
such as heat (Beuving, 1980), food and water deprivation (Beuving, 1980) transport (Broom and
Knowles, 1989) and fear (Beuving et al., 1989) give rise to elevated corticosterone levels.
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1.4. Project objectives

The overall objective of the project was to develop assay procedures for measuring stress
hormone levels in egg albumen and to then assess whether albumen levels of these hormones are
measures of stress in laying hens.  The specific objectives of the project were:

1) Establish egg hormone assays

2) Establish a data base and prepare a literature review of stress in laying hens

3) Establish the relationship between circulating blood and egg albumen concentrations
    of stress hormones.

4) Evaluate stress hormone concentrations in egg albumen when hens are exposed
    to known stressors.
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2. Development of Egg Assays
The principle stress hormones of the avian adrenal gland are corticosterone and the

catecholamines (adrenaline, noradrenaline and dopamine).  Assays for these hormones were
developed and characterized for determining levels in egg albumen.

2.1. Corticosterone assay

The corticosterone assay can be segregated into two components, the technique for the
determination of the corticosterone concentration in the albumen extract and the actual procedure for
extraction of corticosterone from egg albumen.

(a) Determination of corticosterone concentration:

The procedure developed was a radioimmunoassay (RIA). It is a competitive binding assay
where endogenous corticosterone in the albumen extract and added radio-labelled corticosterone
compete for binding to a specific antiserum added to the assay at limiting concentration. The bound
corticosterone and free corticosterone are separated using charcoal absorption. Unknown sample
corticosterone levels are estimated by comparison to known standard levels.

(i) Reagents: Phosphate-buffered saline (PBS)

- 4.33 g Sodium dihydrogen phosphate

- 3.04 g Di-sodium Hydrogen Phosphate

- 9 g Sodium Chloride

- 1 g Gelatin

- 1 g Sodium Azide

all dissolved in 1 litre distilled water and the pH adjusted to 7.0

(ii) Antiserum: The antiserum was raised in rabbits against Corticosterone –21
Thyroglobulin and purchased from ICN Biomedicals.

(iii) Label: Radiolabelled Corticosterone - 2,4,6,7-3H corticosterone was purchased from
Amhersman Australia.

(iv) Dextran-coated charcoal

– 4 g charcoal

– 1 g dextran – T70 dissolved in 1 litre PBS.

(v) Counting Scintillant - Biodegradable Highsafe-3 purchased from Canberra Packhard
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(b)Assay development

(i) Antibody titre: As a first step, a suitable antibody titre was established. A dilution that bound 40%
of a fixed level of 2,4,6,7-3H corticosterone (10,000 CPM) was chosen.

(ii) Unextracted standard curve: In the next step an unextracted standard curve was established.
Corticosterone (Sigma Chemical Company) was dissolved in assay PBS-buffer to give
concentrations ranging from 0.1 to 51.7 ng/ml and these were used in the assay.

(iii) Assay procedure: To 12x75 mm glass tubes, 0.1 ml standard is added, 0.1 ml antiserum dilution
and 0.1 ml corticosterone label. The contents are incubated overnight at 40C. The following day 0.25
ml dextran-coated charcoal is added, vortexed and incubated for 15 min before centrifuging at 3000
rpm for 15 min. The supernatant is poured off into a scintillation vial and 3ml of counting scintillant
added. Radioactivity was measured on a Wallace Beta counter. An example of a standard curve is
given in Figure 1.

(c) Extraction procedure

To determine corticosterone levels, it needs to be removed from other constituents in the
albumen. As a first step, a suitable solvent for extraction had to be assessed. Corticosterone is a
steroid and has variable solubility in a range of organic solvents. Going on studies using similar RIA
methods to measure other steroids, the following solvents were tested, neat hexane, dichlormethane,
diethyl ether and combinations of hexane and diethyl ether. To assess extraction efficiency known
amounts of both radiolabelled and unlabelled corticosterone were added to an albumen sample
prepared from a collection of eggs and recovery rates determined. Dichloromethane was
unsuccessful, as was neat hexane. Increasing the % of diethyl ether added to hexane increased the
extraction efficiency. Diethyl ether alone gave an efficiency of around 90-92 % and was accepted as
the solvent to use in the assay.

The procedure for extraction of corticosterone from egg albumen is as follows. A sample of 1
g (0.5 g albumen: 0.5 g water) is placed in a 20 ml glass scintillation vial and 12 ml of diethyl ether is
added. The vial and contents are shaken for 10 min and then centrifuged at 1800 rpm for 10 min. The
vial contents are frozen and the solvent fraction transferred to another vial. The solvent is dried down
under nitrogen until approximately 2 ml solvent remained and this is transferred to a 12x75 mm glass
assay tube and then dried completely. After drying, 0.1 ml of PBS buffer is added and left overnight.
The next day the samples are treated as described for the standard curve. The extraction procedure
initially entailed a double extraction step using 2 volumes of 8 ml but it was found that equal
efficiency could be achieved using a single extraction step with 12 ml of solvent.

2.2. Catecholamine assay

As with the corticosterone assay there were two aspects to the procedure, extraction of the
catecholamines from egg albumen and measurement of catecholamine levels in the extract using high
performance liquid chromatography (HPLC) with electrochemical detection.

(a) Extraction from albumen

(i) Reagents
Acidified n-butanol: to 500 ml of n-butanol, 50 ml 1N sodium hydroxide was added and

shaken for 2 min. The aqueous phase was decanted and then the butanol similarly treated with 50 ml
of 1N hydrochloric acid. The butanol was then washed with three separate 50 ml volumes of Milli-Q
water. The butanol was then saturated with sodium chloride and allowed to stand for 4 days when
any aqueous phase was removed. To 500ml of the treated n-butanol was added 0.42 ml of
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concentrated hydrochloric acid, 0.5g potassium bisulphite and 0.05g EDTA. The butanol was filtered
and stored refrigerated until needed.

Phosphate buffers: 0.5M phosphate buffer was prepared by dissolving 35.5 g di-sodium
hydrogen phosphate in 490 ml Milli-Q water and adjusting the pH to 6.5 with phosphoric acid and
then adjusting the final volume to 500 ml with Milli-Q water. The 0.1M phosphate buffer was
prepared by dissolving 7.1 g di-sodium hydrogen phosphate in 490 ml Milli-Q water and adjusting
the pH to 2.5 with phosphoric acid and then adjusting the final volume to 500 ml with Milli-Q water.

After the extraction of albumen samples with acidified n-butanol, adrenaline is taken up into
0.1M phosphate buffer and noradrenaline and dopamine into 0.05 M phosphate buffer (Moudgal et
al., 1992).

(ii) Procedure

A large effort was placed into developing the extraction procedure. Only limited details of
the extraction procedure will be given.  The procedure has been developed over the course of the
project and there have been changes since the last project report. These changes were instigated by
the observations made during the animal studies looking at catecholamine levels during stress.  For
each egg two 4 g samples of albumen were added to 20 ml scintillation vials. To each was added 10
ml of ice-cold acidified n-butanol and then shaken for 10 min. Each vial and contents were
centrifuged at 1500 RPM for 15 min. The n-butanol fractions were removed to a 15 ml culture tube
and to one, 3 ml of 0.5M Phosphate buffer (pH 6.5) was added and to the other, 3 ml of 0.1M
phosphate buffer (pH 2.5). These are shaken for 15 min and then the n-butanol fraction were
removed and the buffer fraction stored until assayed for catecholamines. By adding known amounts
of catecholamines to egg albumen, the extraction efficiency was estimated to be 68-73%.

(b) Extraction from plasma or phosphate buffer fractions

To a 1.5 ml Eppendorf tube, 0.5 ml of plasma or albumen buffer-fraction was added followed
by 0.025 ml of sodium metabisulphite (0.5 mg/ml), 0.025 ml of DHBA (the internal standard used to
estimate the extraction efficiency) and 0.5 ml of Tris-buffer pH 8.6. The contents are vortexed and
then approximately 5 mg of acid treated aluminum powder was added and the contents vortexed.
After settling, the supernatant was removed and the aluminum washed 3 times with 1 ml of water.
After the third washing the contents are centrifuged at 10,000 rpm for 5 min and then the supernatant
removed. To the aluminum precipitate, 0.14 ml of 0.1M perchloric acid was added, the contents
vortexed and then centrifuged. A 0.125 ml sample of the supernatant is removed and placed in a
HPLC vial ready for injection onto the HPLC column.

(c) The HPLC assay

(i) Reagents

HPLC Buffer: this is 0.15M Phosphate made by adding

- 20.7 g sodium dihydrogen Phosphate

- 500 mg EDTA

- 40 ml Methanol

- 1 bottle waters Pic-8

to 1 litre with Milli-Q water and then filtered.
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(ii) Stock standards

0.5M stock standard solutions of adrenaline, noradrenaline, dopamine and 3,4-
dihydroxybenzylamine (DHBA) were made up in 0.2M HCl. These are stable for 12 months.

(iii) Working standards

5.0uM working solutions of adrenaline, noradrenaline, dopamine and 3,4- dihydroxybenzylamine
(DHBA) were made up from (ii) in 0.1M perchloric acid.

(iv) HPLC assay standards

These are made from the working standards on the day samples were processed and run on the
HPLC.

(a) Internal standard: 25ul of 3,4 dihydroxybenzylamine (DHBA) is made to 5 ml 0.1M
perchloric acid.

(b) Assay standards: 25ul of adrenaline noradrenaline and dopamine are made to 5 ml of 0.1M
perchloric acid. These were serially diluted too give standards of 25, 12.5 6.25, 3.12 and 1.56 ul in 5
ml. A 100 ul sample of each standard is added to a HPLC injection vial and to this is added 25ul of
internal standard. A volume of 100ul is loaded onto the HPLC column.

(v) HPLC conditions

HPLC column: Waters C-18 bondapak

Flow rate: 1.0 ml/min of buffer

Potential: 600 mV

Current: 0.2 nA

Baseline: + 0.05 nA

Injection volume: 100ul

(d) Determination of unknown concentrations

The unknown concentrations are determined following integration of the areas for the plots
of adrenaline, noradrenaline and dopamine and comparing these to the area for the standard plots. An
adjustment is made for the extraction efficiency by comparing the area for the internal standard
measured in the samples and the area of the internal standard plot from the standards. This gives the
noradrenalin/DHBA, adrenaline/DHBA and dopamine/DHBA ratios and these are used to evaluate
catecholamine concentrations in the sample. Adjustments were also made for the dilution factors
involved during the preparations of the samples. Using the internal standard as a measure, extraction
efficiency was 75-83% on best occasions but more often around 70%.
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3. Experimental Studies
3.1. Establish relationship between circulating and egg concentrations of

hormones

3. 1. 1. Relationship between plasma corticosterone and egg albumen levels

Two experiments investigating the relationship between blood corticosterone levels and
those in egg albumen were completed. To establish if such a relationship exits, hens were infused
with corticosterone at a constant rate using Alzet mini osmotic pumps (Alza corporation, USA).
These pumps had been used previously for similar studies and have an accuracy of ± 5% of the
prescribed flow rate. For the present studies, Model 2ML2 pumps with a flow rate of 5ul/h and
patency over 14 days, were used.

(a) Experiment 1

In the first experiment hens 49 weeks of age, 5 per treatment were infused with 40, 30, 20, 10
or 0 ug/h of corticosterone (Sigma Chemical Company) dissolved in PEG-400 (Merck). These dose
rates were chosen according to data published elsewhere showing that doses of 30ug/h using similar
pumps affected egg production but 10 ug/h had no effect (Etches et al., 1984). Hens were bled on
four occasions, days 1, 5, 8 and 13 after pump insertion. Time of sampling was recorded and only
samples collected within 2 minutes were accepted for analysis. Data previously published indicates
that samples taken within 2 min are free of the stress-induced increases in plasma corticosterone
brought about by the bleeding procedure. Over the 14 days of treatment, food intakes and egg
production were recorded. Eggs were collected on days 7, 8, 9, 11 and 13 after pump insertion.
Following collection, eggs were weighed, cracked open and the albumen collected and weighed.
Albumen samples were stored for later analysis. After the 14 day infusion hens were sacrificed and
the ovaries observed. Significance of treatment effects was assessed by analysis of variance and
Tukey’s-Kramer multiple comparisons test.

It was found that doses of corticosterone greater than 10ug/h had a dramatic effect on egg
production. Hens treated with doses of 40ug/h ceased egg production within 4 days of treatment,
those receiving 30ug/h within 5 days and those treated with 20ug/h within 6 days. At the end of the
infusion period all hens receiving doses above 10ug/h had no large yellow ovarian follicles on the
ovary and a regressed oviduct.

The plasma corticosterone concentrations are shown in Figure 2. One day after pump
insertion plasma levels were elevated by all corticosterone infusions. Levels for hens treated with 40
ug/h were significantly higher than all other treatments except the 30 ug/h dose. Infusion rates of 20
and 30 ug/h increased plasma levels significantly above those of control hens. Levels following
treatment with 10 ug/h were not significantly different to those for hens given 20 or 0 ug/h. By day 5
plasma levels had declined in all treated groups and remained at these levels for the remainder of the
trial. Plasma concentrations for hens treated with 40 ug/h were higher than for all other treatments on
all days. Differences for all other groups were not significant from day 5 to day 13.

When designing this trial it was decided to allow blood corticosterone levels to stabilize
before collecting eggs in the second week of the infusion. These decisions were regrettable as good
egg numbers were only obtained for the 0 and 10 ug/h treatment groups during the second week.
Only one hen in each of the 20 and 30 ug/h groups laid eggs during the second week. Egg albumen
corticosterone concentrations are shown in Figure 3. There were no differences in levels for hens
treated with 0 or 10 ug/h. This observation would be anticipated considering that there were no



10

differences in plasma corticosterone levels. A second experiment was planned because of the obvious
problems with the dose rates used in this study.

(b) Experiment 2

Following the observations from experiment 1, a similar study was conducted using lower
corticosterone doses and collecting eggs much earlier after the start of the treatments. Four hens per
treatment had Alzet pumps inserted and were infused with corticosterone doses of 15, 10, 5, 2.5 or 0
ug/h for 14 days. The day of pump insertion was considered as day 0 of the study. Eggs were
collected from day 2 to 13 and individual production was recorded. Hens were bled by venipuncture
on 5 occasions (days 2, 6, 8, 10 and 13) with a 2 minute limit placed on the sampling time. Following
collection, eggs were weighed, cracked and the albumen removed, weighed and stored until assayed.
The samples of albumen and plasma were assayed for corticosterone. Treatment differences were
assessed by a one-way analysis of variance and multiple comparisons between treatments were made
using Tukey’s–Kramer test. 

Hens receiving 10, 5 and 2.5 ug/h had similar egg production to the control hens. Hens
receiving 15ug/h had ceased egg production 5 days after the treatment starting and so, there is limited
data available for this group. Plasma corticosterone concentrations are shown in Figure 4. While it
would appear that the plasma levels for the 15 and 10 ug/h treatments are higher on days 2 and 6,
these differences were not significant. This is probably due to the small sample number and the large
variation at these sampling times. This is supported by the observations that levels for the 0, 2.5 and
5 ug/h treatments are similar and didn’t change over the study period but were significantly lower
than values for the 15 ug/h group on days 8, 10 and 13. Plasma levels for the 15 ug/h group remained
constant over the period of the study.

The corticosterone concentration in egg albumen is given in Figure 5. Because of the small
number of eggs, those collected for each treatment on days 2 and 3, 4-6, 7 and 8, 9 and 10 were
analyzed together. On days 2 and 3 the levels in albumen for the controls were higher than for the 15
and 10 ug/h groups. There were no other significant differences for the rest of the study.

(c) General considerations

 The infusion of corticosterone at rates above 10 ug/h had a major influence on egg
production. Treatments of 15ug/h or greater ceased egg production within 4-6 days. The severity of
the effect increased as the dose rate increased. From experiment 1 it seems clear that initially, the
infusion rate of corticosterone influenced plasma levels but that levels declined to control values in
all but those hens receiving the highest infusion rate (40 ug/h). Even for these hens there was a
decrease in concentration after day 1. In experiment 2, doses below 15 ug/h had no significant effect
on plasma levels.

From these studies it is difficult to establish that a relationship exists between plasma and egg
albumen corticosterone concentration. As the studies were explorative there were flaws in the design.
A major problem was that treatments giving high plasma levels of corticosterone resulted in poor egg
production, while for treatments with ample eggs the plasma levels were not significantly different to
controls. Egg collection should have started immediately in experiment 1 and this would have
allowed collection of eggs for all treatments over the first two days when plasma levels were high.
This may have allowed the relationship between plasma and egg levels to be determined.

It may be difficult to establish such a relationship for other reasons. If the pumps remain
patent over the 14 days, which they are designed to do, the data indicate that mechanisms operate to
reduce elevated plasma levels to physiological levels in the hen. This is probably brought about by
negative feedback regulation acting to suppress endogenous corticosterone release. Corticosterone
acts on the hypothalamic-pituitary-axis to inhibit endogenous corticosterone release and over rides
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efforts to elevate plasma levels. With the information gathered from these studies it would be
possible to design a study that would more fully achieve our initial aim.

3. 1. 2. Relationship between catecholamine concentrations in plasma and egg albumen

A difficulty in determining the relationship between plasma catecholamine levels and egg
albumen levels exists because sampling procedures quickly raise blood catecholamine levels. When
sampling for corticosterone there is a time lag between the stress-induced release of corticosterone
and the actual rise in plasma corticosterone. This is not the case with the catecholamines were levels
increase almost immediately. A simple approach to this problem was to inject hens subcutaneously
with different doses of adrenaline and then establish what levels are in the albumen. This is the
equivalent of a dose-response study.

(a ) Experiment 1

Five hens per treatment were given 0, 2.5, 5, 10 or 20 mg of adrenaline per day as a single
injection. Adrenaline (Sigma Chemical Company) was dissolved in polyethyleneglycol-400 (Merck)
to give the required dose in 1ml. Hens were injected at 0700-0800h daily for 4 days. Eggs were
collected on days 2-5, weighed, cracked open and the albumen separated. From each egg, two sub-
samples (approx. 1g) were taken and 1 g of Milli-Q water was added.

As with many explorative studies major problems were experienced. Adrenaline injection had
disastrous effects on egg production. Hens treated with 2.5 and 5 mg/d of adrenaline had similar egg
production to control hens. For hens receiving 10 or 20 mg/d only one hen laid an egg on the second
or third day. No catecholamines were detected in the albumen samples. Later work indicated that 1 g
sub-samples are too small to extract sufficient catecholamine to reach the detection limit of the assay.
It was subsequently shown 4 g sub-samples are required to extract sufficient catecholamine to measure
using the HPLC technique.

(b) Experiment 2

Five hens per treatment were given 0, 2.5, 5, 10 or 20 mg of adrenaline per day as a single
injection. Adrenaline (Sigma Chemical Company) was dissolved in polyethyleneglycol-400 (Merck)
to give the required dose in 1ml. Hens were injected at 0700-0800h daily for 2 days. Eggs were
collected on days 2 and 3, weighed, cracked open and the albumen separated. From each egg, two sub-
samples (approx. 4g) were taken and processed for catecholamine analysis.

As with the first study, adrenaline injection had dramatic effects on egg production. Only 3-4
eggs were collected from the hens treated with 10 or 20 mg adrenaline. Ten eggs were collected from
the controls, 6 from hens treated with 5 mg and 5 eggs from those treated with 2.5 mg. Differences
between treatments were assessed by analysis of variance and Tukey’s-Kramer multiple comparison
test.

The albumen adrenaline and noradrenaline concentrations and total levels are shown in Figure
6. There were no significant differences in adrenaline levels and the only significant difference in
noradrenaline was between the 2.5 and 5 mg treatment groups.

(c) General considerations

There were many problems associated with the two experiments described in this section.
There were extreme effects of adrenaline on egg production with the high doses inhibiting production
almost immediately. In experiment 2 the small number of eggs and the large variation between
samples from the same treatment groups made it difficult to develop any strong conclusions.
Dopamine was not detected in any of the samples processed.
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3.2. Investigate effects of stressful situations on egg concentrations of
hormones

The specific aims of these studies were to determine the concentrations of corticosterone and
catecholamines in egg albumen collected from hens subjected to known stressors. The stressors used
in these studies were heat, handling and cage density.

3.2.1. Effects of short duration exposure to high temperature.

In this study, hens were subjected to heat stress over a short period. Two groups of 15 hens
were moved to temperature controlled rooms and housed in individual cages. Hens were fed a
commercial ration ad libitium and had free access to water at all times. The temperature in both
rooms was set at 180 C. After 7 days the temperature in one room was maintained at 180 C and for the
other, increased to 320 C over 24 h. Hens were maintained at these temperatures for a further two
weeks (weeks 1 and 2). Ten eggs from each group were collected at random on two occasions during
weeks 1 and 2. The eggs were weighed and the albumen collected and weighed. A subsample of
albumen was collected and stored for corticosterone analysis. Two samples of approximately 4g were
also taken from 8 eggs for each treatment and processed for catecholamine analysis. Blood samples
from all hens were collected by venipuncture at the end of each treatment week. Any differences
between treatments were assessed by unpaired student’s t-test.

The plasma corticosterone levels are shown in Figure 7. No significant differences in levels
were observed. The corticosterone concentration and total albumen corticosterone levels are given in
Figure 8. On days 4 and 9, corticosterone concentration and total levels were significantly elevated in
the hens exposed to the higher temperature. Any differences on the other days were not significant.
The adrenaline concentration and total adrenaline in albumen are given in Figure 9. On day 3 the
levels were at the detection limit of the assay. On day 4 the levels in the hens at 180 C were
significantly higher than those for hens at 320 C. There were no other significant differences.

3.2.2. Effects of long term exposure to high temperature for hens housed two/cage

In this study hens were subjected to heat stress over a long period of egg production. This
was part of a larger experiment investigating effects of diet composition on egg production under
heat stress. The hens used in this study were those on the control diet in the larger experiment. Two
groups of 20 hens, housed 2 per cage (30x40x45 cm) were used in the study. The groups were
housed separately in temperature controlled rooms. The temperature of one room was set at 180 C
and the other at 300 C. Hens were moved in to the rooms at 20 weeks of age and the treatment
temperatures applied from 24 weeks of age. The hens were fed a diet based on commercial
recommendations and prepared on the University site, Camden. Hens had free access to fresh water
at all times. On two occasions each week during weeks 28, 29, 30, 31 and 32 after initial exposure to
the treatment temperature, 10 eggs were collected from each group. The eggs were weighed, albumen
collected and weighed and then sub-samples taken for corticosterone analysis. On one occasion for
weeks 29-32 two sub-samples of approximately 4g of albumen were taken from 8 eggs for each
treatment and processed for catecholamine analysis. At the end of week 32 a blood sample (2 ml)
was collected from one hen in each cage. Differences between treatments on individual sampling
days were assessed using unpaired student’s t-test.

The mean corticosterone concentration and total corticosterone in egg albumen are shown in
Figure 10. Mean corticosterone concentration in egg albumen samples collected from hens at 300 C
were never lower than those kept at 180 C. Concentrations were significantly higher during all weeks
of sampling although during some weeks this was the case on only one of the sampling days. Total
albumen levels were significantly different during weeks 29, 30 and on one day during 32. In figure
11, the relationship between egg albumen corticosterone concentration and total corticosterone in the
egg albumen is given. The relationship is highly significant and indicates that changes in albumen
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concentration are real increases and not due to changes in albumen amount. Therefore it is likely that
changes in concentration are due to increased corticosterone accumulation in the albumen.

There were no significant differences in adrenaline concentrations or total adrenaline levels
when comparing the two heat treatments (Figure12). There were large variations in individual samples
and this is highlighted by the large standard errors.

Plasma corticosterone concentration is given in Figure 13. The mean level for hens at 300 C
was significantly higher compared to those for hens at 180 C. The higher egg levels in the heat treated
hens is probably related to the higher plasma corticosterone levels found in these hens.

3.2.3. Effects of handling

In this study the effects of handling hens on egg albumen corticosterone and adrenaline
concentrations were investigated. Two groups of 15 hens were housed individually in cages
(30x40x45 cm) in a commercial type shed. Hens were fed a commercial diet and had free access to
fresh water at all times. On treatment days hens from one group were removed from their pens and
taken to a space out of sight of other hens. The hens were handled for one minute. During this time
they were inverted 5 times, then moved side to side while being held aloft and eventually placed on a
table until the one minute time period elapsed and then returned to their cage. This was repeated
hourly for 6 hours starting at 0700 h on 3 consecutive days over two weeks with a one week rest
period between the two treatment periods.

Eggs were collected from 10 hens from each treatment for three days, starting the day after the
first handling and ending the day after the third day of handling. These collections were repeated
during the second week of handling. Eggs were weighed, albumen collected and weighed and a sample
removed for corticosterone analysis. On the first two collection days of each week two 4 g sub-
samples were removed and processed for catecholamine analysis. A 2 ml blood sample was taken from
all hens by venipuncture. Blood was collected 45 min after the final handling on the third day of the
two treatment weeks. The blood was centrifuged, plasma harvested and stored until assayed for
corticosterone. Any differences between treatments on individual collection days were assessed by
unpaired student’s t-test.

To determine what effect handling had on the profile of blood corticosterone levels a separate
group of 36 hens were used. Thirty hens were handled in a similar manner to those used in the main
experiment while 6 were left and not handled. Blood samples were collected from 6 different hens at
10, 20, 30, 40 and 60 min after being handled and from the 6 hens not handled. Blood was centrifuged,
plasma harvested and stored until assayed for corticosterone.

Plasma corticosterone concentrations 45 min after the last handling episode on day 3 of each
treatment week are given in Figure 14a. At 45 minutes after handling the corticosterone levels are
elevated but not significantly above those for hens not-handled. The pattern of plasma corticosterone
after handling is shown in Figure 14b. The pattern of corticosterone release shows that levels peaked
at 10-20 min and approached those seen before handling at 60 min. From this pattern it is likely that
levels at 45 min would not be significantly greater than pre-handling levels. This could be the reason
that levels at 45 min in the main handling study were no significantly different for the treatments.

The corticosterone concentration and total in egg albumen are given in Figure 15. For handled
hens the concentration in albumen was significantly higher on all days of week 1 and for the first day
of week 2. The increased concentration was reflected in significantly higher total levels on the same
days. There were not significant differences on the last two days of week 2.

The adrenaline concentration and total adrenaline in egg albumen are shown in figure 16.
There were no significant effects of handling on concentration or total adrenaline.
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3.2.4. Cage density. The short-term effects of housing hens individually (single), in pairs (twin) or
groups of five (multiple)

In this experiment, hens, 56 weeks of age, in full egg production and housed in single pens
were moved to new single cages, to cages housing two hens or to cages housing 5 hens. In this study
15 hens were housed in single cages (25x55x45 cm), 20 hens at 2/cage (25x55x45 cm) and 40 hens at
5/cage (50x55x60 cm).  The hens had free access to a commercial diet and fresh water.

Eggs were collected randomly from 10 hens for each treatment 2, 4, 8, 10, 16 and 21 days
after being moved to the cages. Eggs were weighed, albumen removed and weighed and a sample
removed for corticosterone analysis. On the first two collection days of each week, two 4g sub-
samples of albumen were removed from 8 eggs for each treatment and processed for catecholamine
analysis. Blood samples (2 ml) from 10 hens of each treatment group were taken by venipuncture on
day 5, 11 and 22 after being moved to the cages. The samples were taken within 2 min, blood
centrifuged, plasma harvested and stored until assayed. The blood samples were taken on days where
the stressed-induced rise in corticosterone due to sampling would not influence albumen levels on egg
collection days. Differences between treatments were assessed by analysis of variance and individual
differences by Tukey’s-Kramer multiple comparison tests.

The plasma corticosterone levels are given in Figure 17. There were no significant differences
in the levels. The egg albumen concentration and total egg corticosterone levels are given in Figure 18.
On day 2 the concentration was significantly lower for hens housed individually but the difference was
not apparent in total levels on the same day. On day 4 the concentration in all treatments were
significantly different with highest levels in the twin group and lowest in the single group. These
differences were also seen in the total corticosterone levels. On day 8, the concentration was lower in
the single-housed group compared to the twin housed group and again there were similar differences
in total levels. No other differences in corticosterone were observed.

The adrenaline concentration and total adrenaline levels are shown in Figure 19. There were
no significant differences in adrenaline levels.

3.2 5. Cage density. Effects of long-term housing of hens individually (single) or in groups of five
(multiple)

This experiment was part of a larger experiment were hens were housed in single cages
(25x55x45 cm) or groups of five (50x55x60 cm). In the larger experiment the effects of diet and cage
density on egg production were investigated. In the present study hens on the control diet were used.
All other treatments were the same for each group. Twenty hens housed in single pens or forty housed
in 8 cages of 5 were allocated to the experiment for egg collection.  The hens were moved to the cages
at the point of lay and remained for 50 weeks. As the hens were a part of a large study no invasive
intervention was allowed and therefore no blood sampling was permitted.

Eggs were collected randomly from 10 hens for each treatment twice weekly during weeks 24,
27, 29, 32 and 34 weeks after being transferred to the cages. Eggs were weighed, albumen removed
and weighed and a sample removed for corticosterone analysis. Two 4 g sub-samples were removed
and processed for catecholamine analysis on one sampling day during weeks 24, 27, 32 and 34.

The corticosterone concentration and total corticosterone in egg albumen are shown in Figure
20. Concentrations were higher for the single caged hens on one sampling day (1.01 ± 0.05 Vs 0.84 ±
0.05 ng/ml) and on this same day total corticosterone was also significantly different. No other
significant differences in concentration were noted. On four sampling days the total albumen
corticosterone levels were significantly higher for hens housed in multiple cages. On these days there
were no significant differences in total albumen weight but it tended to be higher in the multiple-caged
group. This and the slightly higher concentration for this group on days where total corticosterone
levels were significantly greater could explain the differences.
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The adrenaline concentration and total adrenaline in egg albumen are given in Figure 21. Both
the concentration and total adrenaline tended to be higher for hens housed as groups and differences
approached significance at some sampling times. Individual variation was large in the multiple-caged
group and this made interpretation of the data difficult.
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4. Discussion and Implications
 Responses to stress are a normal part of the survival strategies to changing environmental

conditions. In the absence of such changes an animal is not capable of modifying its physiology to
the needs of such changes. Normally the stress abates or the animal removes itself from the influence
of the stress. Animal husbandry practices used in modern egg production are thought by some to
impose stress on hens from which they have no escape.

Stress manifests itself in behavioural and physiological changes. The problem has always been
what level of change is functionally beneficial and what level constitutes a chronic state to the
animal. The difficulty has always been to objectively assess the effect of husbandry practices on
hens. Stress imparts physiological responses from the HPA axis with consequent changes in stress
hormone levels; corticosterone and catecholamines. Major difficulties are experienced in measuring
these changes because sampling techniques are stressful.

The general purpose of this project has been to develop and assess the practicality of using a non-
invasive means of measuring stress in hens. To this end, procedures to measure corticosterone and
catecholamine levels in egg albumen have been developed. Egg albumen is laid down over
approximately 6 h and so accumulation of substances in albumen would be a good indication of the
physiological state over the period of albumen accumulation.

Development of the corticosterone assay was relatively easy. The assay is robust and easily
adapted to processing large numbers of samples at low cost. A simple, one step extraction procedure
and then an overnight  RIA incubation result in good recoveries and replication.

Development of the catecholamine assay was tedious and many problems had to be overcome.
The final procedure was developed over the course of the project. It was not until towards the end of
the project that the technique was refined to a point where reliability could be expected with
confidence. The difficulties experienced in development limited the time available to process
samples. It was decided to process only adrenaline samples through the HPLC assay. In retrospect
results indicate that assaying larger numbers of samples would have been of little extra value in
assessing albumen adrenaline as a measure of stress in hens. A limited number of samples were
processed for noradrenaline. No differences in treatments were found and so it was decided to put all
efforts into processing the adrenaline samples.

The associations between either plasma corticosterone or adrenaline and levels in egg albumen
were difficult to establish using data generated from the experimental work. Both corticosterone and
adrenaline at high rates of administration have dramatic effects on ovarian function. Infusion rates
not affecting egg production gave plasma levels not significantly different from untreated hens. This
was true for some dose levels that inhibited egg production. The data on effects of adrenaline are
limited and make it difficult to establish what relationship exists between plasma and albumen levels.

Why didn’t high infusion rates transcend into high plasma levels? Blood corticosterone, like many
hormones, is under regulation of negative feedback mechanisms where high plasma corticosterone acts
at points in the HPA axis to inhibit endogenous release. The high infusion rates of corticosterone
probably, initially, result in high plasma levels as indicated in Figure 2. High levels probably inhibit
endogenous release so that plasma levels return to the normal physiological range. If abnormally high
levels were maintained, it would be detrimental to the hen. Whatever the reason for the plasma levels
failing to remain elevated, the experimental design failed to provide a conclusive determination of the
relationship between plasma and albumen concentrations. For both the adrenaline and corticosterone
studies it would have been better to have given the doses as a single injection to a large number of
individual hens and collect eggs the following day knowing that in many cases production ceases after
1-2 days of treatment.
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From Figure 11, it is clear that there is a significant relationship between albumen corticosterone
concentration and total egg albumen corticosterone. This is important because it indicates that a
measure of concentration by itself is a measure of differences between animals and not a
consequence of changes in egg size or more particularly in egg albumen weight.

4.1. Effects of handling

Handling stresses hens and the magnitude of the plasma corticosterone response depends on the
duration and type of handling (Kannan and Mench, 1996; Broom and Knowles, 1989). Upright and
gentle handling is not as stressful as inverting a hen and being held by the legs (Kannan and Mench,
1996). In the present study, the combination of upright handling and inverting hens on their back
caused an elevation in plasma corticosterone (Figure 14b). Maximum plasma corticosterone occurred
by 10 min after handling and the increase was about 3 ng/ml above values for non-handled hens.
Values at 45 min were approaching basal values and this would account for the lack of any difference
in plasma levels seen in the main egg collection experiment (Figure 14a) where hens were bled 45
min after a handling episode. The fact that levels at 45 min were not different between handled and
non-handled hens suggests that there was no carry over effect from each individual handling episode.
This indicates that the handling procedure was moderately stressful because much more vigorous
handling such as holding hens by their legs in an inverted position for 2 min results in plasma
corticosterone significantly elevated (8 ng/ml) 3 h after the event (Kannan and Mench, 1996). Broom
and Knowels (1989) found that for hens handled gently and upright, plasma corticosterone levels
returned to pre-handled levels by 30 min.

In the first week of handling, egg albumen corticosterone levels were significantly elevated above
levels for non-handled hens. This was also the case for the first day of the second week but not for
later days. During the second week handled hens could have habituated to the procedure and found it
less stressful. The levels in the non-handled hens were higher on the last two days during week 2 than
in week 1. The hens were housed in commercial type housing and not under a controlled
environment. Its possible that some other environmental stressor influenced plasma corticosterone
levels.

Handling is a potent stimulator of catecholamine release (Beuving and Blokhius, 1997; Korte et
al., 1997). While levels are elevated following handling they remain there for only a short period of
4-5 min and then return to pre-handling levels. While plasma catecholamines were not measured,
blood levels would be elevated for only a short period, similar to the published patterns, and this is
probably why no difference in egg albumen values was observed (Figure 16).

4.2. Effects of heat

High ambient temperature is a major stress of poultry in many parts of the world (El-
Halawani et al., 1973; Geraert et al., 1996). In the present study the effects of heat on albumen levels
of corticosterone and adrenaline were evaluated during both a period of short-term exposure (2
weeks) and over a much longer period. Exposure of hens to 180 C or 320 C had no effect on plasma
corticosterone when samples were taken at the end of week 1 and 2 of exposure. These samples were
taken mid-morning for the first week and mid-afternoon for week 2 and this may have contributed to
the difference between the two weeks. Hens display a daily rhythm in corticosterone release
(Beuving and Vonder, 1977), where levels are highest in the morning and decline during the
afternoon until reaching a nadir at night. Any differences due to heat might be observed only at times
when corticosterone levels are low during this daily rhythm. In turkeys subjected to 320 C the plasma
corticosterone levels were elevated but differences were only significant when compared to hens at
240 C during the time when values were normally low during the daily rhythm. (El-Halawani, et al.,
1973).
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Heat stress in broilers increased plasma corticosterone by approximately 1 ng/ml (Deyhim and
Teeter, 1991). If similar subtle changes occur in hens, processing large numbers of samples would be
required to remove individual effects and detect significant differences. Small changes in plasma
corticosterone might more readily be detected in egg albumen because it accumulates over 6 hours.
Albumen corticosterone values were elevated in hens exposed to 320 C on days 4 and 9 (Figure 8)
after exposure and tended to be higher on day 3 but not day 10.

Little is known about the effects of heat on catecholamine levels in hens and in the present study
short-term heat exposure had no effect on adrenaline levels in egg albumen. There were large
variations in adrenaline levels but the levels were low and often at the detection limit of the assay.

Long-term exposure to heat results in differences in egg albumen corticosterone concentration
(Figure 10). During weeks 28-32 after exposure to 300 C, egg albumen corticosterone concentrations
were higher at all times compared to hens exposed to 180 C. On 7 of the 10 collection days values
were significantly higher. Similar differences were not observed for adrenaline in albumen (Figure
12). Only one blood sampling was made, at the end of week 32, and at this sampling corticosterone
levels were higher for hens at 300 C, the difference being about 1.5 ng/ml. Its reasonable to suggest
that plasma differences of 1-2 ng/ml in corticosterone can be detected as significant differences in
egg albumen corticosterone.

Hens in the long-term study were housed 2 birds/pen. The increase in plasma corticosterone could
be related to an interaction between heat and cage density. Cage density could have elevated plasma
corticosterone in hens at 180 C and the levels for hens at 320 C could be magnified by effects of heat
and any synergism. These possible intricacies especially in a commercial environment, of
interactions between stressors, could be evaluated using this non-invasive model.

4.3. Effects of cage density

Many have proposed that housing hens in cages is stressful and in this study, the effect of cage
density and the associated social stress on albumen levels of adrenaline and corticosterone was
investigated. In one study it was reported that plasma corticosterone levels increase in hens in floor
pens when the density increased but not for hens housed in cages (Koelkebeck, and Cain, 1984). In
contrast, plasma corticosterone increased in hens housed in cages as number increased from 3 to 5
hens/cage (Mashaly, et al., 1984).

In this study, short-term and long-term effects were investigated. If there are effects of cage
density on plasma corticosterone it was not evident 5 days after moving hens to cages (Figure 17).
While it would have been useful to have plasma samples at earlier times following transfer to the
cages this was not possible because samples can not be taken at times close to when egg collection
takes place. This avoids any effect of sampling-induced rises in corticosterone influencing albumen
levels.

The egg albumen corticosterone concentrations suggest initial plasma levels were probably higher
in hens following their move to cages. Levels on days 2 and 4 of collection were higher in all groups
compared to later sampling times. At early collection times, housing hens in groups of 2 or 5
significantly increased albumen corticosterone compared to hens housed individually. For the first
few days, housing hens in pairs seemed to be more stressful than keeping them in groups of  five. As
with all previous studies in this project there was no effects on albumen adrenaline levels.

When hens are housed individually or in a group of 5 over a long period there was little effect on
albumen corticosterone concentrations although levels tended to be higher for hens housed in groups.
In this study there were differences in total corticosterone amounts in albumen. The tendency for
concentration to be higher in group-housed hens coupled with a tendency for total albumen weights
to be greater in this group probably accounts for the differences in total corticosterone. There were no
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long-term effects on the corticosterone and adrenaline concentrations in albumen. These data suggest
that following an initial period of adjustment, housing hens in groups may be no more stressful than
housing hens individually.
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5. Summary and Recommendations
The first significant contribution of the studies detailed in this project was the development

of assay procedures for measuring corticosterone and catecholamines in egg albumen. The
catecholamine assay is time consuming, expensive and involves two extraction steps. Extraction
efficiency and assay sensitivity determine that large sample amounts need to be extracted. Albumen
adrenaline appears not to be an indicator of stress in hens. None of the situations used in our studies
and believed to impose stress on hens increased albumen adrenaline levels. While we analyzed
limited numbers of samples, the data suggest that noradrenaline would not be a better measure.

Dantzer and Mormede (1983), citing work in mammals, argue that environmental stresses exert
their effects on plasma corticosterone not by physical effects but rather through psychological effects.
If this is the case, plasma corticosterone should be a good measure of well-being. We were not able
to establish a relationship between plasma corticosterone and egg albumen levels. This failure was
probably due to our experimental design rather than the non-existence of such a relationship.

From these studies, it appears that egg albumen corticosterone and total corticosterone
concentrations reflect exposure of hens to stress. Plasma corticosterone levels are probably controlled
within limits by feedback mechanisms. When hens are exposed to various stressors, corticosterone
levels may not change greatly and therefore plasma changes might be difficult to detect especially
when relying on single point blood samples. The problem is further complicated by the intrinsic
diurnal pattern evident in hens. Subtle changes in plasma corticosterone may more readily be
detected in albumen as it is accumulated over 6 h during egg formation. Small plasma changes can be
magnified because of the accumulation time. This point is highlighted in the handling study. A single
point blood sample at 45 min after handling indicated that there was little difference in plasma levels
however, the profile over the hour following handling indicated that plasma levels are elevated for at
least 30 min. The increase over this short period for 6 handling episodes resulted in significant
elevation in albumen corticosterone concentration. This point is also reinforced by the short-term
heat study. While it would require more rigorous examination, it is likely that albumen corticosterone
could be a good assessment of stress in hens.

In summary the major findings arising from the project are:

1) Catecholamines are difficult to measure. No evidence was found to indicate that egg albumen levels
of these hormones are increased by stressors, which influence corticosterone levels. It is concluded
that adrenaline levels in albumen fail to provide a non-invasive measure of stress in hens.

2) Corticosterone levels in egg albumen increase when hens are exposed to stressors. Moreover,
corticosterone is easily measured in albumen and sample processing is relatively inexpensive, both
important aspects of a rapid assay method.

3) The results of the project indicate that a more extensive evaluation of albumen corticosterone
concentrations as a measure of stress in hens is warranted and should provide a very useful tool in
assessing the effects of husbandry and housing on hen welfare.
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Figure 1:  The corticosterone standard curve.
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Figure 2: The mean (± SEM) plasma corticosterone concentration in 
hens infused with corticosterone for 14 days using subcutaneous 
osmotic pumps. Pumps were inserted on day 0 and blood samples 
were collected by venipuncture on days 1, 5, 8 and 13. 
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Figure 2: The mean (± SEM) plasma corticosterone concentration in 
hens infused with corticosterone for 14 days using subcutaneous 
osmotic pumps. Pumps were inserted on day 0 and blood samples 
were collected by venipuncture on days 1, 5, 8 and 13. 
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Figure 4: The mean (± SEM) plasma concentration of corticosterone for hens 
infused with corticosterone at 0 2.5, 5, 10 or 15 ug/h using mini osmotic pumps. 
The pumps were inserted subcutaneously on day 0 and remained in place until 
day 14.
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Figure 5: Egg albumen corticosterone concentrations for hens infused with 
corticosterone at 0, 2.5, 5, 10 and 15 ug/h for 14 days using mini osmotic 
pumps inserted subcutaneously.  The pumps were implanted on day 0. Values 
are the means (±SEM) for all eggs collected on days 2-3, 4-6, 7-8 and 9-10 for 
each of the treatments. 
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Figure 6a. The mean (±SEM) noradrenaline concentration (A) and total 
noradrenaline (B) in egg albumen for hens treated with subcutaneous 
injections of adrenaline. The number of eggs collected for each treament is 
given by number within the appropiate columns.

Figure 6b. The mean (±SEM) adrenaline concentration (A) and total adrenaline 
(B) in egg albumen for hens treated with subcutaneous injections of 
adrenaline.The number of eggs colected for each treament is given by the 
number within the appropiate  columns.
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Figure 7. The mean (±SEM) plasma corticosterone concentration for hens
housed at a temperature of 180 C or 320 C. The blood samples were taken at the
end of the first or second week after the temperature was elevated to 320 C.
There were no significant differences between treatments.
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Figure 13a. The mean (±SEM) plasma concentration of corticosterone for hens
exposed to 320 C or 180 C. Samples were taken at the end  of week 32 after the
initial exposure to the treatment temperature. The difference between the groups
was significant.
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Figure 13b: The scatter plot of plasma corticosterone concentration for hens 
exposed to 180 C (n=20) or 300 C (n=20). The samples were taken at the end 
of week 32 after the initial exposure to the treatment temperature.  Linear 
curve fits are given for each treatment.
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Figure 14a. The mean (±SEM) plasma corticosterone concentration for hens 
handled or not handled for 1 min every h for 6 h. The sample was taken 45 
min after the last handling eposide. 
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Figure 14b. The mean (± SEM) plasma corticosterone concentration for
hens handled for 1 min and then bled at 10, 20, 30, 40 and 60 min later.
Thirty six hens were used, 6 being bled at each sampling time.



35

Figure 15:  The mean (± SEM) concentration of corticosterone (upper panel) 
and total  corticosterone (lower panel) in albumen for eggs collected from hens 
not handled or  manually handled for one minute each hour for 6 hours each day 
starting at 0700h. Hens  were treated on three consecutive days each week for 
two weeks with a one week break between these two periods. Significant 
differences are denoted by  * .  
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Figure 16: The mean (± SEM) adrenaline concentration (upper panel) and total adrenaline
(lower panel) in egg albumen for hens not handled or manulally handled. Hens were handled
for one minute each hour for 6 hours. Hens were treated on 3 consecutive days for two weeks
with a one week break between the two treatment periods. There were no significant
differences between treatments. 
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Figure 17. Mean (±SEM) plasma corticosterone concentration for hens housed 
in single, twin or multiple cages. Samples were taken on day 5, 11 and 21 after 
being moved to the cages. There were no significant differences between
treatments. 
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Figure 18.  The mean (± SEM) corticosterone concentration and total 
corticosterone in egg albumen for hens housed in single, twin or multiple cages. 
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Figure 19:  The mean (±SEM) adrenaline concentration (upper panel) and total 
adrenaline in egg albumen for hens housed in multiple or single pens. The eggs were 
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were no significant differences between treatments.
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Figure 21:  The mean (±SEM) adrenaline concentration (upper panel) and total 
adrenaline (lower panel) in egg albumen for hens housed in single pens or multiple 
cages. There were no significant differences between treatments.
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Stress, Hen Husbandry and Welfare
1: Introduction

While the concept of stress is understood, a definition remains difficult. Stress as a term
describes the way an organism responds to environmental stimuli it perceives as a threat, real
or anticipated, to its survival or well-being (Harvey et al., 1984). Selye (1936) described a
syndrome in response to a variety of 'noxious agents". For this syndrome there was an acute
response, occurring within a few minutes and termed the 'alarm reaction' and a chronic
response occurring over days, the 'general adaptation syndrome', which was an overall
attempt by the organism to adapt to its changing environment. A simplistic attempt to
categorize the stress response, has divided it into a reflex, 'alarm or emergency reaction"
component, principally mediated by adrenomedullary activation, followed by a period of
adaptation, accompanied by increased adrenal function, then by a stage of exhaustion which
results in death if adaptation fails (Selye, 1950).

Stressors are events internal or external that elicit a defence response by the hen aimed at
maintaining homeostasis. The ability to respond depends on the severity of the stressor and
the inherent ability of the hen to respond. Responses can be specific or non-specific
(generalized). While exposure to a stress evokes a range of physiological responses many
highlight the significance of the adrenal gland in these responses. This and other aspects of
the stress response in poultry are reviewed in the following comprehensive overview of this
topic. Husbandry practices used in the egg industry and their welfare implications are also
discussed.

2: The adrenal gland

There are paired adrenal glands located anterior and medial to the cephalic lobe of the
kidney. They receive blood via braches from the renal artery and each gland has a single
vein returning blood to the vena cava. The adrenal glands consist of chromaffin and cortical
(interrenal) tissue and unlike in mammals, the glands are not divided clearly in to a distinct
outer cortex and inner medulla. Chromaffin tissue is intermingled throughout the cortical
tissue but concentrated around blood spaces and is more abundant towards the centre of the
gland. Chromaffin cells account for about 15-25% of the adrenal tissue. Two distinct types
can be identified, those releasing adrenalin and those noradrenaline (Ghosh 1980).

The cortical cells are arranged in cords which radiate out from the centre of the
gland. The arrangement of specific cell types along the cords does give rise to a level of
structural zonation and function. The cortical tissue is divided into the subcapsular zone, 20-
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40 cells thick and producing aldosterone, and an inner zone which produces corticosterone
(Holmes and Cronshaw, 1980).

The adrenal provides an example of the co-operation existing between the endocrine,
nervous and immune systems in the control of a variety of functions (Ganong, 1963: Siegel,
1985; Hendricks et al., 1991).While there is no division of the avian adrenal into distinct
regions as in mammals, it is still appropriate to consider the hormones synthesised and
secreted from the adrenal as two groups. The cortical hormones, those secreted by the
cortical tissue and the medullary hormones, those secreted by the chromaffin cells.

3: The adrenal hormones

3.1 The cortical hormones
The hormones of the cortical tissue are mainly steroids. In mammals, over thirty steroids

are found in the adrenal gland and most have a carbon skeleton of either 19 or 21 atoms. The
steroids of the adrenal are divided into the glucocorticoids and the mineralocortcoids. For
mammals corticosterone, cortisol, cortisone and 11-dehydrocorticosterone are the principle
glucocorticoids while 11-deoxycorticosterone, 17-hydroxy-11-deoxycorticosterone and
aldosterone are the principle mineralocorticoids. The situation is less clear with hens but the
main corticosteroids are corticosterone, cortisol, cortisone and aldosterone with the principle
glucocorticoid being corticosterone and aldosterone the principle mineralocorticoid (Holmes
and Phillips, 1976). Unlike in mammals, where there is fairly clear distinction between
glucocorticoid and mineralocorticoid functions, the avian corticosteroids have overlapping
activities. Corticosterone is the main steroid released from the avian adrenal and the ratio of
corticosterone to aldosterone is around 14:1 (Kalliecharan and Hall, 1977). Other steroids
found in varying amounts include oestradiol, progesterone and androgens.

3.1.1. Biosynthesis of corticosterone
The major steps in the biosynthesis of the cortical hormones are shown in Figure 1.

Adrenal steroids are synthesized in vivo from either acetate or cholesterol derived from
acetate. Adrenal cholesterol is esterified, with these esters having a high long-chain fatty
acids content. Preformed cholesterol is converted to pregnenolone which is the precursor for
the synthesis of other steroid hormones. Subsequent biosynthesis consists of the progressive
hydroxylation of precursor molecules by specific enzyme systems. The sequence of
hydroxylation normally occurs in the following order, carbon C17 followed by C21 and
C11.
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The conversion of pregnenolone to progesterone is affected by 3ß-hydroxysteroid
dehydrogenase. The hydroxylation of progesterone at C21 forms 21-hydroxyprogesterone
and the further hydroxylation at C11 gives rise to corticosterone. Hydroxylation of
pregnenolone at C17 produces 17-hydroxypregnenolone and this or progesterone acts as the
precursor for 17-hydroxyprogesterone. Further hydroxylation at the C21 carbon results in
11-deoxycortisol which is the precursor of cortisol formed after hydroxylation at C11. The



53

avian adrenal gland has the ability to convert progesterone into 11ß-hydroxyprogesterone,
and this appears to be a secondary pathway for synthesis of corticosterone in birds
(Nakamura et al., 1978).

3.1.2. Biosynthesis of aldosterone
The biosynthetic pathways leading to aldosterone synthesis are given in Figure 1. While

there are alternative routes for synthesis, the generally accepted route is cholesterol to
pregnenolone to progesterone to dexoycorticosterone to corticosterone to 18-
hydroxycorticosterone and then aldosterone. Most corticosterone synthesized in the adrenal
is secreted, although some acts as a precursor for aldosterone synthesis (Aupetit et al., 1979).

The most distinctive feature of cortical cells is the presence of lipid droplets or
liposomes, presumably containing cortical secretions or precursors such as cholesterol. The
level of glucocorticoids in the gland is low and so there is a reliance on hormone synthesis
before significant secretion into the blood can occur. Cortical cells contain high
concentrations of ascorbic acid which is associated with glucocorticoid synthesis and the
levels decrease following stress-induced glucocorticoid release.

3.2. Regulation of corticosterone secretion
One way of defining stress is to base the definition on the neuroendocrine response to

stressors, that is, activation the hypothalamic-pituitary-adrenal axis (HPA). The consequence
of this action is the secretion of glucocorticoids from the adrenal cortical tissue (Harbutz and
Lightman, 1992) and the secretion of catecholamines from the chromaffin cells. The
regulation of corticosteroid release involves a sequence of events starting with the release of
hypothalamic factors, then ACTH (Adrenocorticotrophic hormone) from the pituitary and
eventually corticosteroid from the adrenal.

3.2.1. The Hypothalamic-Hypophyseal axis
The pituitary gland (hypophysis) forms an integral connection with the brain. The

pituitary tissue is derived from the adenohypophysis and the neurohypophysis. In birds, the
adenohypophysis forms the pars distalis (anterior pituitary) and the pars tuberalis; the pars
intermedia is absent in mammals. The neurohypophysis forms the pars nervosa (posterior
pituitary), the infundibular stalk and the median eminence (ME).

The anterior lobe of the pituitary connects with the ME by means of hypophyseal portal
vessels. Factors released into the portal system regulate the secretion of the anterior pituitary
hormones. There is little or no nervous innervation of the anterior pituitary. The posterior
gland consists of neurosecretory terminals which are responsible for the release of arginine
vasotocin and mesotocin. A diagrammatic representation of the mammalian structures is
shown in Figure 2.
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While the regulation of ACTH secretion is less well defined in birds than mammals, it
has many similarities. In mammals, ACTH release is regulated by corticotropin releasing
factor (CRF) and vasopressin (VP). Both CRF and VP are synthesized and secreted by the
paravocellular cells of the paraventricullar nucleus (Whitnall, 1993) and thus a mixture of
CRF and VP is presented to the pituitary and they act to augment one another (Caraty et al.,
1990; Alexander et al., 1991; Jacob and Minton, 1993). Vasopressin augmentation maybe a
strategy to elevate ACTH action during stress. Stimulation of aminergic activity in the
hypothalamus is probably responsible for the release of CRF and VP (Yamashiro et al.,
1984). In sheep, VP is a more potent stimulator of ACTH release than CRF (Pradier et al.,
1986) but the reverse is the case in pigs (Liu et al., 1990). In vitro studies in rats have shown
that oxytocin, angiotensin II, adrenalin and noradrenaline have limited capacity to stimulate
ACTH release (Watanabe and Orth, 1988). It is also known that cytokines are involved in
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regulating the HPA (Whitnall, 1993). Interleukin-1, interleukin-6 and TNF  have been

implicated and probably increase ACTH release during infection and inflammation.
Stress-induced responses of the HPA can be considered in two domains, the effects of

acute stress and the effects of chronic or repeated stress. A variety of acute stressors have
been shown to elicit increases in plasma ACTH and corticosterone. Acute stress results in an
increase in bioassayable and immunoreactive CRF in the ME and lasts about 2-3 minutes
(Murakami et al., 1989). The ME, CRF levels decrease after about 30 minutes, probably
indicating release from the ME (Suda et al., 1988). There is a further peak at around 60 min,
probably reflecting increased synthesis (Moldow et al., 1987).

There can be differential activation of the HPA with different stressors stimulating
synthesis of particular mRNAs. Physical stress increases CRF mRNA and proenkephalin
mRNA while psychological stress stimulates CRF mRNA only (Lightman and Young, 1987,
1988; Harbuz et al., 1991). Increases in proenkephalin mRNA suggest the involvement of
endogenous opoids in the control of ACTH release. Arginine vasopressin (AVP) coexists
with CRF in approximately 50% of the parvocellular CRF neurones (Whitnall et al., 1987).
Hypertonic-saline stress increases CRF mRNA and AVP mRNA (Lightman and Young,
1988). The level of CRF mRNA remains unchanged after cold stress (Harbuz and Lightman,
1989) or ether stress (Watts, 1991). The differential release of ACTH-releasing factors into
the hypothalamic-pituitary portal system is confirmed by blood sampling and
immunoneutralization studies (Gibbs, 1984; Linton et al., 1985; Plotsky et al., 1985).

Studies into chronic stress are difficult because of the absence of a good experimental
model. Many investigators have attempted to emulate chronic stress by using an acute stress
applied over several days. With such an approach there is habituation which results in
attenuated responses (Kant et al., 1985; Spencer and McEwen, 1990). Habituation seems to
be specific to the stress imposed as alternative acute stressors can elicit a normal response
(Kant et al., 1985) or heightened response (Hashimoto et al., 1988; Scribner et al., 1991).
Plasma ACTH levels do not remain elevated in chronic stress (Hashimoto et al., 1988).
Chronic stress is associated with near normal circulating ACTH and corticosterone levels.
There has been the suggestion that AVP plays an important role in chronic stress. The
proposal is that endogenous AVP is essential for the pituitary to remain responsive to stress
during times it has become refractory to CRF stimulation (Scaccianoce et al., 1991). A study
by Hauger and colleagues (1990) showed that restraint-stress results in loss of anterior-
pituitary CRF receptors but that this did not effect the release of ACTH in response to
another acute stressor. During chronic stress the pituitary could become hypersensitive to
AVP.
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3.2.2. Pituitary-adrenal axis
Glucocorticoid secretion from the adrenal is under the primary influence of

adrenocorticotrophic hormone (ACTH), synthesized and released from the pituitary.
Synthesis and release of corticosterone is stimulated by ACTH. Corticosterone levels in
adrenal effluent blood increase 250% following an intravenous ACTH injection. The
response is realised in 2-3 min but is not maximal until 15-30 min (Harvey et al., 1980). The
ACTH is synthesized as part of the larger protein, proopiomelanocortin (POMC). After post-
translation processing, POMC yields ACTH and ß-Lipotrophin which is further processed to
ß-Endorphin and alpha-melanophore-stimulating-hormone ( MSH). As with mammalian

ACTH, the avian equivalent is a simple polypeptide of 39 amino acids (Li et al., 1978).
Ostrich ACTH differs from mammalian ACTH at positions 15,27,28,29,31 and 32 (Li et al.,
1978). ACTH is synthesized by cells in the cephalic lobe of the anterior pituitary
(Yamashiro et al., 1984).

There are also non-pituitary sources of ACTH or ACTH-like materials (Krieger, 1983).
Rodent leukocytes (Smith et al., 1982) and non-stimulated avian leukocytes (Siegel et al.,
1985) secrete ACTH-like material and this increases following antigen stimulation. Avian
leukocytes are stimulated by CRF in vitro to produce assayable ACTH (Hendricks et al.,
1995).

3.3. Regulation of aldosterone secretion
In mammals, aldosterone secretion is controlled by the renin-angiotensin system. Renin

from the kidney capsules is released in response to low sodium or low blood volume. Renin
in turn acts to stimulate the conversion of angiotensin-1 to angiotensin-II. It is angiotensin-II
that acts to stimulate aldosterone release from the adrenal. There is evidence that the same
system operates in birds (Radke et al., 1984). In birds atrial natruretic peptide (ANP)
released from the heart is also involved in the regulation of aldosterone release. There is also
evidence that ACTH stimulates release.

3.4. Corticosteroid transport
Glucocorticoids are transported in the blood bound to protein carriers in a reversible

association. Corticosterone is bound to a specific binding protein, corticosterone-binding
globulin (CBG) or to non-specific-binding protein (probably albumen). Corticosterone-
binding globulin, has high-affinity low binding capacity whereas the non-specific-binding
protein has high capacity but low binding affinity (Wingfield et al., 1984). Circulating
concentrations of CBG are determined by endocrine status, most likely through an influence
on liver synthesis (Kovacs and Peczely, 1983). Normally CBG is around 50-80% saturated
and only requires small amounts of corticosterone to become fully saturated. A small
increase in steroid blood concentration will increase the free circulating concentration
greatly. Binding to the protein is probably important in controlling availability and in
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stabilization of the free blood concentration. In contrast to mammals, avian CBG has affinity
for dexamethasone (Gould and Siegel, 1978) and this could account for the different
metabolic effects of dexamethasone seen for the two groups.

3.5 Glucocorticoid receptors:
Corticosterone receptors have been found in many body tissues (Hylka and Doneen,

1983: Bellabarb et al., 1983; Tu and Moudrianakis, 1973). The receptors are of the
steroid/thyroid hormone nuclear receptor type which control differential gene expression by
enhancing specific gene expression (Evans, 1988; Beato, 1989). There are two types of
receptors in the CNS. Type-1 receptors bind aldosterone, corticosterone, cortisol and
deoxycorticosterone equally in vitro. Type-11 receptors bind dexamethasone, cortisol,
corticosterone, deoxycorticosterone and aldosterone with decreasing affinity (Reul and de
Kloet, 1985).  Type-1 receptors are thought to regulate basal CRF gene expression at the
nadir of diurnal ACTH secretion (Dallman et al., 1987) and regulate peak ACTH secretion
(Dallman et al., 1989). Type-11 receptors are involved in stress-induced ACTH release
(Reul and de Kloet, 1985). In mammals the receptor is a polypeptide chain folded into three
distinct domains; the carboxyl-terminal domain binds to the hormone, the middle domain
binds DNA and the amino terminal end activates gene transcription. Most of the activated
receptors bind to sites which do not initiate transcription (Alberts et al., 1989).

Selectivity of gene expression is achieved by restricting the expression of different
receptors in specific cells. Different sets of genes in different cells will be accessible to the
hormone receptor complex (Evans, 1988). Transcription of specific mRNAs result in
proteins which elicit the specific cellular response attributed to corticosterone. The duration
of the corticosterone response is determined in part by the rate of degradation of the receptor
/hormone complex.

The hippocampus contains moderate to high glucocorticoid receptor numbers (De Kloet
et al., 1987). In rodents changes to glucocorticoid receptor occupancy leads to altered
interpretation of the environment and could determine an animals emotional state and its
adoption of a coping strategy to stress (Korte et al., 1995; 1996).

3.6. Factors stimulating corticosterone release
Any stress imposed on animals and perceived as a threat will stimulate corticosterone

release. Corticosterone release is thought to be a non-specific stress response. Factors
reported to cause corticosterone release are feed and water deprivation (Scanes et al., 1980),
heat or cold (Freeman and Manning, 1982; Edens and Siegel, 1975), infection (Curtis et al.,
1980), restraint (Beuving and Vonder, 1978) and fear (Harvey et al., 1985).
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3.7. Clearance and metabolism
Basal concentrations of plasma corticosterone for chickens range from 0.4-12 ng/ml

using radioimmunoassay (Radke et al., 1984: Satterlee et al., 1980). Corticosteroids are
cleared from the circulation with a simple exponential decay. Estimates of the half-life of
corticosterone range from 10-22 min for different species of domesticated birds (Birrenkott
and Wiggins, 1984; Kovacs and Peczely, 1983: Thomas and Phillips, 1975). The liver is the
main site of degradation.

3.8. Diurnal rhythm
Plasma corticosterone and CBG levels show a distinct diurnal rhythm (Beuving and

Vonder, 1977; Kovacs and Peczley, 1983: Wilson et al., 1982) with CBG levels lagging
approximately 4 h behind (Siegel et al., 1976). Maximum concentration is observed at the
end of the dark, start of the light, periods. The rhythm relates to changes in CRF, ACTH and
hypothalamic activity. Shifts in the diurnal pattern occur in response to reproductive and
nutritional status and in hens also to the ovulatory cycle (Wilson et al., 1982: Wilson and
Cunningham, 1981). There are also seasonal variations in the pattern of corticosterone
secretion. In birds generally this pattern is influenced by such factors as feed supply, weather
patterns, migration and territorial behaviour.

3.9. Feedback regulation and habituation
Plasma corticosterone regulates brain corticosterone receptor numbers (Sapolsky et al.,

1984) and feedbacks to regulate synthesis and release of CRF and ACTH (Kamstra et al.,
1983: Vale et al., 1983; Sapolsky et al., 1984). Corticosterone also acts on the adrenal to
decrease it's responsiveness to ACTH and on the liver to depress CBG synthesis (Etches,
1976; Malek, 1981).

The habituation of the corticosterone response that occurs in response to prolonged stress,
heat (Siegel and Latimer, 1984), cold (Siegel and Latimer, 1970), underfeeding (Freeman et
al., 1981) and exercise (Rees et al. 1983), could be accounted for by this feedback
mechanism. Avian corticosterone response does not show habituation to exogenous ACTH
(Rees et al., 1983). So adaptation to prolonged stress may result from a decrease in ACTH
release, a consequence of habituation of the central nervous system and the control it has
over CRF release. Adaptation probably increases the threshold required for a particular
stimuli to elicit ACTH release. There are probably situations where there is adrenal
compensation and stress-induced ACTH release results in an exaggerated adrenal response
to a persistent stress or another unfamiliar stressor (Vernikos-Danellis, 1965). This could be
the situation where there is continued elevation in plasma corticosterone (Beuving and
Vonder, 1978) or adrenalin (Freeman and Manning , 1979) following handling stress.

The response from the adrenal can be modified by experience (Mason, 1971; Dantzer and
Mormede, 1983). It is possible that an animal can develop an expectancy and cognitive
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appraisal. Failure of expectancy may stimulate the HPA. For hens food deprivation results in
elevated plasma corticosterone, however the response is greater in hens previously fed ad
libitum than in hens fed intermittently (Rees et al., 1984). The involvement of the nervous
system  is critical to the intensity of the adrenal response. Physical stressors are unable to
activate the HPA if emotional stimulation is absent. Since responses to stress are related to
behavioural changes, then habituation of nervous input stimulus could be responsible in part,
for suppressed adrenal function.

Neonatal exposure to thermal stressors appears to improve tolerance to heat in later life
(Reece et al., 1972; Arjona et al., 1988). Acclimatising chickens to high temperatures later
in life can also be achieved by exposing them to feed restriction during neonatal growth
(Zulkifli et al., 1994a). Does this habituation occur without the presence of the
glucocorticoid during the initial stress? This is a question that Zulkifli and colleagues
(1994b) have attempted to answer. In their work, neonatal chickens were feed 60% ad
libitum and were then treated with or without metyrapone. Fasting increases corticosterone
in fowls (Zulkifli et al., 1993) and metyrapone inhibits the conversion of
deoxycorticosterone to corticosterone (Dominguez and Samuels, 1963). For those chickens
treated with metyraprone later growth under heat stress was compromised. Also, those not
treated with metyraprone had superior disease resistance. The authors concluded that short-
term disruption to homeostasis during the neonatal stage without any associated change in
corticosterone levels may not be helpful to the animal in subsequent responses to stressors.
Their suggestion is that corticosterone plays a role in habituation and prepares an animals for
later disruptions to homeostasis.

There is some evidence that habituation can effect growth and egg production. Egg
production is depressed by handling hens but only for those hens not accustomed to the
procedure (Hughes and Black, 1967). Twice a day handling during the three weeks of
brooding, increased growth rate in broilers and in female layer chicks but not male layer
chicks (Jones and Hughes, 1981). Similar effects were reported by Thompson (1976) but not
McPherson et al., (1961) and Reichman et al., (1978). However, in the later two studies,
chicks were only handled once weekly. Irregular handling could be detrimental to growth
whereas regular handling may enhance the chicks ability to cope with novel stresses.

Adaptation to the caretaker increases antibody response in hens (Gross and Siegel, 1979).
The authors attributed this effect to a decrease in corticosterone. Heat exposure for 1 h
increases corticosterone levels in lymphatic tissue (Siegel and Gould, 1982), however, the
levels decreased over seven subsequent exposures to heat. A suggested reason for this could
be, that prior stress increases the corticosterone binding to hypothalamic receptors and that
this acts as a negative feedback to suppress CRF secretion (Davidson et al., 1968).
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4. Hormones of the chromaffin cells

4.1. Biosynthesis of catecholamines
The synthesis of catecholamines, noradrenaline and adrenalin is shown in Figure 3. L-

tyrosine, an amino acid which is derived from the diet or from the essential amino acid L-

phenylalanine, is the precursor of the catecholamines. Hydroxylation of phenylalanine to
tyrosine occurs in the liver, catalysed by phenylalanine hydroxylase. The oxidation of
tyrosine to dopa (3,4-dihydroxyphenylalanine) occurs in the adrenals and is catalysed by
tyrosine hydroxylase which resembles phenylalanine hydroxylase and uses the same co-
factors. The next step is the decarboxylation of dopa to hydroxtryramine (3,4-
dihydroxphenylethylamine) under the catalytic influence of aromatic L-amino acid
decarboxylase. Hydroxtryramine is converted to noradrenaline under the influence of the
enzyme  -hydroxylase. Methylation of noradrenaline to adrenalin is catalyzed by

phenylethanolamine-N-methyl transferase. In the synthesis of the adrenal medullary
hormones, hydroxylation of tyrosine to 3,4-dihydroxyphenylalanine is the rate limiting step.

4.2. Control of catecholamine release
Noradrenaline is an adrenergic neurotransmitter and is synthesized and stored in nerve

endings. When released it acts locally on adrenergic receptors and does not normally enter
the plasma in sufficient quantities to act as a circulating hormone. Noradrenaline is released
from all post-ganglionic nerve terminals but the response differs according to the type of
adrenergic receptor present and post-receptor events. Tissue response will depend of the
relative numbers of receptors present. Adrenalin is a circulating hormone released from the
adrenal is response to pre-ganglionic impulses in the splanchnic nerves. Both the adrenal and
peripheral nerves are controlled by pre-ganglionic sympathetic nerves originating in the
spinal chord.
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The chromaffin cells, homologous to neural tissue, contain adrenalin and noradrenaline in
granules or membrane-bound vesicles. Adrenalin and noradrenaline are synthesized in
distinct cell types, the proportion of each varies with different bird species (Gosh, 1980).
The association of chromaffin cells with cortical tissue is a development in phylogeny. In
mammals the tissues are divided into two distinct areas, the cortex and the medulla. Further
down the evolutionary scale there is an increasing level of randomization of the two tissues.
In birds the chromaffin cells are distributed fairly evenly within the cortical tissue.
Chromaffin cells are found in many parts of the body and are associated with sympathetic
nerves, being in close contact with nerve endings. Stimulation of the sympathetic nervous
system results in release of catecholamines from the chromaffin cells. The response is
apparently unrelated to the severity of the stress imposed (Jurani et al., 1980: Lahiri, 1982).
The catecholamines can be released relative to their individual adrenal concentrations or
adrenalin can be released preferentially because the conversion of noradrenaline to adrenalin
can take place by the induction of phenylethanolamine-N-methyltransferase (PNMT). The
chromaffin cells are also influenced by blood-borne factors and hormones.
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Factors stimulating catecholamine release are varied. Environmental stressors such as
heat and cold (Lin and Sturkie, 1968), restraint (Zachariasen and Newcomer, 1975) and
forced exercise (Rees et al., 1984) can be potent stimulators of release. There are also many
chemical and hormonal stimuli including insulin (Pittman and Hazelwood, 1973), ACTH
(Zachariasen and Newcomer, 1974), corticosterone (Zachariasen and Newcomer, 1975)
anaesthesia (Sturkie et al., 1970), and propranol (Nishumura et al., 1981).

4.3. Catecholamine receptors
Adrenalin and noradrenaline interact with specific cell surface receptors. Adrenergic

receptors were first classified as either being of   or ß subtypes and were identified
according to adrenergic agonist effects on smooth muscle, contraction ( -effect) or

relaxation (ß-effect) (Alquist, 1948). The response in the tissue will depend on the relative
numbers of each receptor type and the ability of the agonist to interact with these receptors.
More recent work has established that there are three distinct types of ß-receptors, these
being named ß1, ß2 and ß3 (Caron and Lefkowitz, 1993). There are two distinct classes of
 -receptors,  1 and  2 (Lands et al., 1967) and within these classes, three distinct types of
 1 and  2 receptors (Caron and Lefkowitz, 1993).

Activation of adrenergic receptors and membrane signalling events involves three
components, the receptor with its seven transmembrane segments, a guanine nucleotide
regulatory protein (G protein) and an effector component that can be either adenyl cyclase or
an ion channel (K+ or Ca2+) (Lefkowitz and Caron, 1988: Casey and Gilliman, 1988). The
N-terminus end of the receptor is on the extracellular side and contains the catecholamine
binding site with glutamate and aspartate residues forming part of the binding site.
Activation of the receptor leads to an interaction with it's appropriate G protein, this
promotes nucleotide exchange and activation of the G protein, this in turn modulates activity
of the effector system. Both  - and ß-receptors bind ligands with different pharmacological
profiles and are coupled to different signal transduction mechanisms. Stimulation of  1-
receptors and ß1-receptors is by noradrenaline released from sympathetic nerve endings
while ß2 and   2 are stimulated by adrenalin released from the adrenal gland.

The ß1 and ß2 receptors are linked to the effector, adenyl cyclase via the transducer Gs-
protein and results in increased cAMP. The  1 receptors activate phospolipase-C through a

transducer. Phospolipase acts on phospoinositides to catalyse formation of diacylylglycerol
and inositol triphosphate. The diacylglycerol activates protein kinase C which initiates
phosphorylation of intercellular proteins. Inositol triphosphate promotes release of calcium
(Ca2+). The  2 receptors act to inhibit adenyl cyclase acting via protein transducer Gi.
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5. The effects of corticosterone

5.1. General effects on metabolism
Corticosterone administration increases food intake, suppresses growth rate, increases

carcase and liver fat levels (Baum and Meyer, 1960; Nagra and Meyer, 1963; Freeman and
Manning, 1975; Bartov et al., 1980; Bartov, 1982). Some of these effects are seen after as
little as 4 days of treatment (Bartov, 1982). Corticosterone increases plasma glucose and
liver glyconeogenesis in birds (Snedecor et al., 1963: Stamler et al., 1954). The glucose is
largely derived from protein catabolism (Nagra and Meyer, 1963) and the shift in
metabolism favours fat deposition as there is an increases in plasma free fatty acids (FFA)
and an increase in the saturated fat to unsaturated fat ratio (Nagra and Meyer, 1963).

Growth of broilers is impaired in a dose-dependent manner by corticosterone
administration (Saadoun et al., 1987; Tur et al., 1989; Siegel et al., 1989). The depressed
growth rate in birds (Davison et al., 1983: Siegel and Van Kampen, 1984) is often in spite of
an increase in feed intake (Bartov et al., 1980: Siegel and Van Kampen, 1984). There are a
least three factors contributing to the decreased growth rate (Siegel and Van Kampen, 1984).
Firstly there is an increase in protein catabolism as indicated by increased nitrogen excretion,
uric acid excretion and water intake. Secondly, a reduction in absorptive efficiency as
indicated by similar energy retention but increased food intake. Thirdly, an increase in
energy retention in the form of fat.

5.1.1. Effects on carbohydrate metabolism
Corticosterone is involved in glucose homeostasis and carbohydrate metabolism. A

prominent action of corticosterone is to promote glucogenesis from non-carbohydrate
sources such as amino acids and fatty acids (de La Cruz et al., 1981). For chickens,
corticosterone administration results in hyperglycaemia and glycogenolysis in liver and
muscle (Joseph and Ramachandran, 1992). Elevated plasma glucose levels (Saadoun et al.,
1987; Simon, 1984) and increased hepatic glucose-6-phosphate activity (Joseph and
Ramachandran, 1992) following corticosterone treatment supports a role in gluconeogenesis.
An increase in muscle and liver levels of phosphorylase after corticosterone treatment
(Joseph and Ramachandran, 1992) suggests that some of the effects are glucagon mediated.
There is evidence that corticosterone influences glucagon release (Macro et al., 1972) and
action (O'Neil and Langstow, 1978) as well as antagonizing insulin action (Natarajan et al.,
1987). So the effects on carbohydrate metabolism could be related to changes in the
insulin/glucagon ratio.

Dexamethasone, a synthetic corticosteroid, inhibits ACTH release in mammals (Carnes et
al., 1987) and chickens (Smoak and Birrenkott, 1986). Adrenocortical insufficiency caused
by dexamethasone treatment has the opposite effects to those resulting from adrenocortical
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excess as seen by giving exogenous corticosterone (Joseph and Ramachandran, 1992). Thus
in chickens dexamethasone does not mimic corticosterone action on carbohydrate
metabolism as it does in mammals (Harrelson and McEwen, 1987).

5.1.2. Effects on lipid metabolism
Exogenous corticosterone is a potent lipogenic agent in chickens (Nagra and Meyer,

1963; Bartov, 1982). A similar effect has been reported for endogenous corticosterone
(Saadoun et al., 1986). When hens belonging to a fat or lean selection line were treated
chronically with corticosterone there was a dose-dependent decrease in body weight and
increases in abdominal and liver fat (Bartov, 1982; Simon 1984; Wiliiams et al., 1985;
Saadoun et al., 1987). There was no significant differences in the way both lines responded.
Liver concentrations of triglycerides and cholesterol were elevated and phospholipids
lowered (Saadoun et al., 1987). There was no effect on food intake and the increase in
fattening is attributable, in the main, to an increase in protein catabolism as is suggested by
elevated plasma uric acid levels in corticosterone-treated hens. Changes in circulating levels
of insulin, glucose and growth hormone (GH) were also observed, however the changes
were dependent on the corticosterone level and whether given during feeding or upon
refeeding.

Corticosterone has a duel effect on insulin release, an immediate inhibitory effect and a
longterm stimulatory effect (Simon 1984). A dose of 5 mg/d corticosterone increased blood
glucose and insulin, suggesting insulin resistance or corticosterone-induced glucogenesis
(Saadoun et al., 1987). The elevated insulin could account for the observed decrease in GH
seen by Saadoun et al., (1987). Exogenous insulin depress GH in fasted chickens (Picaper et
al., 1986).

For broilers injected with 0.5 mg/kg corticosterone for 5 days, significant changes in
energy utilization were observed (Siegel and Van Kampen, 1984). Growth rate in
corticosterone treated birds was lower for the first 3 days but similar on days 4 and 5
compared to untreated birds but food intake was greater. Energy  intake was higher in the
corticosterone-treated broilers as was energy excretion, resulting in lower efficiency when
estimated on an energy-intake basis. While gross energy retention was greater in
corticosterone treated broilers the consequence was an increase in fat deposition as indicated
by the change in respiratory quotient (RQ). The pretreatment RQ was 0.88 which remained
unchanged in the control but increased to 1.0 after 4-5 days of corticosterone treatment. An
increase in RQ is indicative of an increased rate of fat deposition (Dukes, 1958). Fat
deposition requires more energy than protein deposition, 65.4 kJ/g vs 32.4 kJ/g
(Kielanowski, 1965). This would in part be the reason for the increased food intake because
there is no increase in absorptive efficiency (Siegel and Van Kampen, 1984).
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Abdominal fat pad weight is increased following corticosterone treatment (Siegel et al.,
1989; Akiba et al., 1992; Hayashi et al., 1994). The reported decrease in thyroxine (T4)
following feeding of corticosterone (Hayashi et al., 1994) could be related to the fat changes
as there is a relationship between metabolism, fat deposition and T4. When T4 is
administered to chickens on diets with a high grain content there is a decrease in the
abdominal fat weight and triiodothyronine (T3) levels are significantly depressed (Suthama
et al., 1991). Adding trilostane (steroid synthesis inhibitor) to the diet overcame the effects
on protein breakdown observed when corticosterone is given (Hayashi et al., 1994).
Trilostane itself, had some suppressive effects on protein synthesis, which might suggest that
a low level of corticosterone could be required for maximum protein synthesis. Growth
responses of adrenalectomized rats administered cortisol depend on the level given. Low
levels promote growth while high levels induce weight loss (Waterlow et al., 1978).

5.1.3. Effects on protein metabolism
For production animals changes in protein metabolism are apparent after chronic

stress (Klasing and Austic, 1984a,b; Imms, 1967; Richards, 1980; Beisel, 1977). The
manifestations are retarded growth rate in the young and loss of body weight in adults. The
weight loss can be in body water, fat or protein. In many cases these effects are not the
consequence of a decreased feed intake but a decrease in feed utilization. In birds, protein
catabolism is indicated by increased uric acid excretion (Adams 1968), this in turn results in
increased urine flow and water intake. Corticosterone treatments increase water intake by up
to six fold (Siegel and Van Kampen, 1984). High corticosterone concentrations cause
atrophy of skeletal muscle (Bartov, 1985). When glucocorticoids are administered to animals
the effects on protein metabolism are similar to those seen for stress; atrophy of skeletal
muscle and lymphoid tissue and decreased body weight (Rousseau and Baxter, 1979).
Adrenalectomy reduces loss of muscle protein during many types of stress, suggesting a role
for glucocorticoids in the loss of muscle protein (Odedra and Millward, 1982).
Changes in protein metabolism reflect changes in the relative rates of protein synthesis and
degradation (Tomas et al., 1979; Hayashi et al., 1992). Skeletal muscle protein degradation
is increased in a dose-dependent manner by feeding corticosterone but there is no effect on
protein synthesis (Hayashi et al., 1994). Corticosterone acts at the liver to increase glucose
production and induce synthesis of enzymes involved in amino acid catabolism (Kenney,
1969). Varying reports indicate that net liver protein synthesis increases or remains
unchanged (Chertow et al., 1973; Millward et al., 1976; Kim and Kim, 1975). In addition,
corticosterone acts to amplify the actions of other hormones involved in protein metabolism.
Psychological stress increases catecholamine and glucagon release (Bloom et al., 1972;
Freeman and Manning, 1976). Glucagon will depress liver protein synthesis (Woodside et
al., 1974).
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Inflammation and infection are accompanied by large changes in protein metabolism and
the pattern of change is similar irrespective of the agent. The major change is the
mobilization of amino acids from skeletal muscle to the liver (Beisel, 1977; Richards, 1980).
In general there is a decrease in plasma amino acids as they are utilized for energy,
gluconeogenesis and protein synthesis in the liver (Wannemacher, 1977). In chickens, the
amino acids levels in liver, spleen and plasma decrease and levels in muscle and thymus
increase (Klasing and Austic, 1984b).

5.2. Corticosterone effects on reproduction
Ovarian regression is associated with increased plasma corticosterone (Etches and

Williams, 1983; Etches et al., 1984: Moudgal et al., 1991). The rate of ovulation is also
interrupted in a dose-dependent manner (Moudgal et al., 1991) by corticosterone.
Corticosterone injections will delay oviposition with higher doses needed towards the period
of peak egg production, around 35-40 weeks of age. There are reports showing that
corticosterone treatment induces ovulation (Etches and Cunningham, 1976: Etches and
Croze 1983). Injections of ACTH will induce ovulation (Etches and Cunningham, 1976) and
LH release (Wilson and Sharp 1976a; Etches and Croze, 1983), however, the levels needed
are outside the normal physiological range.

The true effects of corticosterone can only be assessed by giving a constant infusion over
an extended period. A normal physiological range (mean plasma level of around 3 ng/ml)
can be maintained by subcutaneous infusion of 30 ug/h of corticosterone (Etches et al.,
1984). When this level of corticosterone was infused into hens, egg production dropped by
day 3 and completely ceased by day 8 (Etches et al., 1984). Similar effects can be achieved
by dietary restriction or feeding diets deficient in calcium or sodium (Douglas et al., 1972;
Summers and Leeson, 1977; Whitehead and Sharp, 1976; Williams et al., 1985). These
dietary effects may be mediated by changes in corticosterone as levels increase with a
reduction in food intake (Etches et al., 1984).

There is a suggestion that the nutritionally-induced effects on egg production are the
consequence of changes at the level of the pituitary. Reduction in food intake causes an
immediate lowering of plasma LH, progesterone and oestradiol (Tanabe et al., 1981).
Nutritionally-induced ovarian regression is also associated with a greatly reduced pituitary
responsiveness to LHRH which is not the case in corticosterone-induced ovarian regression
(Etches et al., 1984). Both oestradiol and progesterone (Bonney and Cunningham, 1976;
Wilson and Sharp, 1976b) are required to maintain LH release. After the infusion of
corticosterone, ovarian regression is associated with a decrease in progesterone, oestradiol
and LH (Etches et al., 1984) with the sequence of hormonal changes suggesting that
corticosterone acts directly at the ovarian level.

In the study of Etches and colleagues (1984) there were differences but not significant
differences in the total number of ovarian follicles in corticosterone-infused hens compared



67

to control hens (Etches et al., 1984). However, there was a major difference in the
distribution of follicle sizes. There were more atretic follicles in the corticosterone treated
hens and a smaller number of large follicles. Although there are less large follicles in
corticosterone-treated hens the total number of follicles is maintained by recruitment of more
small follicles.

Adrenalin induces follicle atresia in vitro (Moudgal et al., 1985) and in vivo (Moudgal et
al., 1990a) and affects ovulation rate (Moudgal and Razdan, 1981). Adrenalin also delays
oviposition  (Sturkie, 1976), however this effect is dependent on the dose and stage of the
laying cycle (Moudgal et al., 1990a). Any effects corticosterone has on reproduction could
be mediated through its effects on catecholamine synthesis. Corticosterone stimulates the
conversion of noradrenaline to adrenalin by inducing PNMT. When alpha-methyl-p-
tyrosine, a blocker of catecholamine synthesis, is administered with corticosterone any
detrimental effects corticosterone has on ovulatory events are prevented (Moudgal et al.,
1991).

The daily rhythm of plasma corticosterone in laying hens (Etches, 1979) can be
influenced by ovulatory factors. Corticosterone is elevated at the time of oviposition
(Beuving and Vonder, 1978). Levels are depressed at night when preovulatory surges of
progesterone, oestradiol and LH occur (Wilson and Cunningham, 1981). Progesterone has
been reported to inhibit corticosterone release.

5.3. Corticosterone effects on the immune system
The immune system consists of immunocompetent cells and accessory cells. Accessory

cells are phagocytic or adherent cells. In birds, immunocompetent cells are those derived
from the thymus (T-cells) and those from the bursa of Fabricius (B-cells). Differentiation of
T-lymphocytes gives rise to subpopulations of T-helper cells, T-suppressors cells and T-
cytotoxic cells and all function within the humoral and cell-mediated components of immune
responses. Acting as effectors to modulate immune function, they produce soluble
lymphokines, known as interleukins or interferons, that regulate B- and T-cell proliferation
and macrophage integration (Lillehoj et al., 1992). The B-cells differentiate in the bursa and
are the cells responsible for antibody (Ig) production.

It is a widely held view that the immunosuppressive effects of stress are mediated by
glucocorticoids. Glucocorticoid receptors are located on lymphocytes and monocytes and the
number increase in response to immune stimulation (Comsa et al., 1982). Stress increases
the incorporation of corticosterone into lymphoid cells (Gould and Siegel, 1981), inhibiting
glucose uptake, protein synthesis and causing lymphocytosis, resulting in decreased cell
number and antibody production. Immunosuppression has been reported after stress or
ACTH injections (Thaxton and Siegel, 1970; 1973: Siegel 1987). Pharmacological doses of
corticosterone can suppress cell-mediated immunity (Gross et al., 1980; Edens et al., 1983).
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Regression of thymus, spleen and bursa occurs following ACTH or corticosterone injections
(Siegel and Beane, 1961; Siegel, 1962).

The effects of environmental stress on the lymphatic tissues are similar to the effects of
ACTH. Corticosterone infusion decreased thymus weight by 71% bursa and spleen weight
by 57% and 35% respectively (Donker and Beuving, 1989). These changes in tissue weight
are consistent with the idea that stressors and corticosterone have catabolic effects on
lymphoid organs (Selye, 1976). Leghorn hens raised in crowded conditions show evidence
of chronic stress and this is associated with increased adrenal weight and lymphatic tissue
regression (Siegel, 1960).

 Hens in stressful environments produce lower antibody response to a variety of antigens
(Gross, 1972; Gross and Siegel, 1975; Thompson et al., 1980; Edens et al., 1983).
Corticosterone causes a reduction in lymphocyte number (Davison and Flack, 1981) and an
increased susceptibility to disease (Gross et al., 1980). After challenging hens with Marek's
disease the severity is increased by continuous corticosterone infusion (Powell and Davison,
1986). When cockerels from lines selected for a high or low antibody titre to sheep red blood
cells (SRBC) (Vander Zijpp and Nieuvland, 1986) were infused continuously with
corticosterone to physiological levels (Webb and Mashlay, 1985; Beuving and Vonder,
1986) and then challenged with SRBC there was a suppression in total antibody production
for the high line (Donker and Beuving, 1989). For the two lines there was a consistent
difference in response to corticosterone suggesting that there was no
genotype/environmental interaction which could be important when considering selection
programs based on immune responsiveness. Davison and Misson (1987) reported a dose-
dependent depression in titres to SRBC following subcutaneous corticosterone treatment.
Injecting chickens with SRBC increases corticosterone secretion (Siegel et al., 1985).  It has
been suggested that stimulated leucocytes secrete ACTH and that this is the reason for the
increase in corticosterone (Trout et al., 1988).

Within 12 h of heat treatment or ACTH injections antibodies to 3 specific antigens
decreased (Thaxton and Siegel, 1972). Pretreatment with suppressor corticosterone
compounds modified this effect (Siegel and Latimer, 1974). Exposure to heat decreases cell-
mediated immunity in hens (Regnier and Kelley, 1981) as will a decrease in actual body
temperature (Siegel, 1971). Any reduction in antibody production could increase the
susceptibility to disease.

A feature of corticosterone is it's anti-inflammatory action. In general, inflammation is a
defence mechanism involved in increasing blood supply and leucocytes at a site of injury.
Inflammation is not always desirable, as in arthritic conditions, and corticosterone’s anti-
inflammatory effects are beneficial in such conditions. There could be an internal feedback
mechanism where activated lymphocytes secrete cytokines which act to increase
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corticosterone release which then acts to suppress lymphocyte activity (Munck et al., 1984).
This could be a mechanism to help maintain homeostasis.

The observation that in response to stress, adrenalectomized rats suffer
immunosuppression, strongly suggests the involvement of factors other than the
glucocorticoids (Keller et al., 1983). The releasing factor CRF has been implicated (Jain et
al., 1991). Stress in adrenalectomized or normal rats decreases T-cell proliferation and
natural killer cell cytotoxicity (Jain et al., 1991). These effects can partly be suppressed by
administration of CRF antibodies or antagonists. Local effects of CRF could be important in
inflammation as administering CRF antibodies reduces inflammatory responses and CRF is
found in the area of inflammation (Karalis et al., 1991).

Activation of the immune system results in the release of cytokines. Interleukin-1 (IL-1)
released from activated macrophages and monocytes stimulates T-cell proliferation,
antibody production and causes fever. Interleukin-1 increases plasma corticosterone and/or
ACTH (Besedovsky et al., 1986; Ovadia et al., 1989; Matta et al., 1990; Harbuz et al., 1992)
and stimulates CRF release (Sapolsky et al., 1987; Navarra et al., 1991). With the gross
effects of corticosterone being to suppress immune cell function, the ability of IL-1 to
influence corticosterone release could act as a feed back mechanism to control the immune
response.  Interleukin-2 and  interleukin-4 stimulate and inhibit PMOC mRNA levels
respectively (Brown et al., 1987; Harbuz et al., 1992).  Interleukin-6 (IL-6) increases ACTH
release (Lyson  and McCann, 1991) and could have a centrally-mediated effect as it evokes
CRF release from hypothalamic explants (Navarra et al., 1991).

5.4. Corticosterone and psychological stress
In general, egg production decreases (Dorminey et al., 1972; Roush et al., 1984) and

mortality increases (Marks et al., 1970: Grover et al., 1972) as cage density increases
(Dorminey et al., 1972). Corticosterone levels are elevated as cage density is increased
(Mashaly et al., 1984). A similar effect was reported for broilers where increased floor
density elevated corticosterone (Pesti and Howarth, 1983).  Adrenal weight has been used as
a measure of stress and adrenal weight has been reported to increase as stocking density
increases (Siegel, 1980). It has been suggested that these responses are to psychological
stress.
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6. The effects of catecholamines

6.1. Catecholamine effects on metabolism
6.1.1. Effects on carbohydrate metabolism
Catecholamine levels are raised following exercise (Rees et al., 1984), blood sampling

(Rulofson et al., 1988) and immobilization (Zachariasen and Newcomer, 1974; 1975).
Plasma catecholamine levels are closely associated with glucose (Cramb et al., 1982) and
lipid (Campbell and Scanes, 1985) metabolism. Noradrenaline and adrenalin promote
hyperglycaemia and this is associated with increased glycogenolysis, increased
gluconeogenesis and decreased glucose utilization by peripheral tissues, with adrenalin
being more potent than noradrenaline. Both hepatic and muscle rates of glycogenolysis
increase following activation of the ß2-adrenergic receptors (McDowell and Anninson,

1991). Activation of ß-adrenergic receptors on hepatocytes by catecholamines, stimulates
adenylate cyclase leading to increased cAMP levels which inturn activate protein kinase,
resulting in phosphorylation of phosphorylase kinase and glycogen synthetase.
Phosphorylase kinase enhances glycogen breakdown. Adrenalin stimulates hepatic
gluconeogenesis by increasing the availability of substrates, lactate and glycerol, these being
generated during lipolysis. Catecholamines are also responsible for a decrease in the
metabolic clearance rate of glucose (Himms-Hagen, 1967).

Catecholamines influence insulin and glucagon release. They act to inhibit insulin
release, an effect mediated via  2-adrenergic receptors on the ß-pancreatic cells (Clutter et
al., 1980) and this is independent of blood glucose levels. Activation of ß2-adrenergic

receptors stimulates insulin release (Remie et al., 1989). Both adrenalin and noradrenaline
stimulate glucagon release (Steffens and Strubble, 1983). Glucagon is released from the
pancreatic  -cells and acts to stimulate hepatic glycogenolysis and gluconeogenesis.

Adrenalin has similar effects as does glucagon but is less potent. Adrenal and noradrenaline
are released in response to the flight or fright syndrome, where as glucagon is released in
response to nutritional stress. Because of the effects on insulin and glucagon, catecholamines
alter the insulin/glucagon ratio. A decrease in the ratio results in mobilization of metabolic
fuels such as glucose and FFA's. Basal levels of catecholamines but not transient levels
associated with activity (ie oviposition) are closely related to FFA concentrations.

6.1.2. Effects on lipid metabolism
In domestic fowl, lipogenesis occurs in the liver with the adipose tissue functioning

primarily for lipid storage and mobilization (Goodridge and Ball, 1967; O'Hea and Leveille,
1968; 1969). In most mammals, adipose tissue is the  major site of fatty acid synthesis.
Hormonal regulation of lipogenesis is also different in mammals and birds with glucagon the
most potent lipolytic agent in chickens (Goodridge, 1973).
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The sympathetic nervous system is the main regulator of lipolysis in man (Webber and
Macdonald, 1993) and sheep (Bassett, 1970). Adipocytes have both ß-adrenergic
(stimulatory) and  -adrenergic (inhibitory) receptors. Stimulation of the ß-adrenergic

receptors by catecholamines activates GTP-binding protein which acts to stimulate adenylate
cyclase resulting in an increase in cAMP and this stimulates protein kinase A to
phosphorylate hormone-sensitive lipase which results in the release of FFA's and glycerol
from stored triglycerides. Growth hormone and glucocorticoids will also stimulate adipocyte
ß-adrenergic receptors. Growth hormone could act to increase B-adrenergic receptor number
(Vernon, 1992). In ruminants, catecholamines inhibit lipogenesis (Vernon, 1980) which is
associated with decreased acetyl CoA carboxylase activity, and stimulate lipolysis (Blum et
al., 1982; Mersmann et al., 1974).

Mobilization of fat stores involves lipolysis and changes in blood supply. Sympathetic
innervation of white adipose tissue is mainly of the vasculature and not the adipocytes
(Fredholm, 1985). Stimulation of the  -adrenergic receptor causes vasoconstriction and the

ß-adrenergic receptor causes vasodilatation. Catecholamines act mainly on the adipocytes
while the neural effects act on blood supply. Lipolytic effects are regulated via the ß1-
receptors and vasodilatation by the ß2 receptors (Lands et al., 1967) with noradrenaline
acting on the ß1 and adrenalin on the ß2 receptors. This would suggest that the effects on

lipolysis are largely due to noradrenaline and vasodilatation effects due to adrenalin.
In isolated chicken hepatocytes adrenalin inhibits lipogenesis in a dose-dependent

manner and noradrenaline has a similar effect but with a lower potency (Campbell and
Scanes, 1985; Capuzzi et al., 1975; Cramb, et al., 1982). The antilipogenic effects of
adrenalin can be reversed using both  - and ß-adrenergic antagonists. The evidence suggests
that inhibition of lipogenesis involves both  1 and ß1-adrenergic receptors (Campbell and

Scanes, 1985). Adrenalin stimulates glycerol release from adipose tissue explants maintained
in culture (Campbell and Scanes, 1985). This lipolytic effect was also observed using ß1/ß2-

adrenergic agonists. Lipolysis is inhibited by  2 agonists similar to the situation in many

mammals (Mersmann, 1984; Burns et al., 1981).

6.1.3. Effects on protein metabolism
Adrenalin infusion has been reported to decrease proteolysis but not to stimulate protein

synthesis (Castellino et al., 1990; Mathews et al., 1990). Clenbuterol, a ß2-adrenergic

agonist, increases carcase protein content in chickens (Takahashi et al., 1993) and this is in
line with similarly reported effects of ß2 agonists on skeletal muscle (Buttery and Dawson,

1987). The clenbuterol effect on protein accretion in chickens is due to a decrease in the rate
of protein degradation as the  ß-agonist is reported to have no effect on rates of protein
synthesis in chickens (Muramatsu et al., 1991). Decreased rates of uric acid secretion in
clenbuterol treated chickens supports this position (Takahashi et al., 1993).
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The effects of glucocorticoids on protein metabolism can be antagonized by ß-agonists.
Feeding corticosterone to chickens (10 mg/kg of diet) increased carcase fat and abdominal
fat and decreased carcase protein (Takahashi et al., 1993). When clenbuterol  was also added
to the diet (0.33 mg/kg) there was a significant effect on the corticosterone reduction in
carcase protein but no effect on the carcase fat levels. In the chicken, ß2-agonists could act
predominantly on protein deposition.

6.2. Catecholamine effects on Reproduction
The ovarian follicle is intensively innervated and contains adrenergic fibres (Gilbert

1969). A role for catecholamines in ovulation is suggested by the report that anti-adrenergic
drugs inhibit and agonists induce ovulation in birds (Kao and Nalbandov, 1972; Moudgal
and Razdan, 1981; 1985). As the largest ovarian follicle advances towards ovulation the
levels of adrenalin and noradrenaline increase and the dopamine levels decrease (Moudgal
and Razdan. 1983). These changes are not seen in the second largest follicle where levels
remain low. Adrenalin in vitro (Moudgal et al., 1985) and in vivo (Moudgal et al., 1990a)
causes atresia of ovarian follicles and in vivo, reduces egg production (Sykes, 1955).
Adrenalin levels in the egg are a good measure of stress in hens (Moudgal et al., 1990b) and
poor egg shell quality (Moudgal et al., 1990c). These deleterious effects can be prevented if
an inhibitor of catecholamine synthesis is administered (Moudgal et al., 1991).

In groups of hens laying at either 40% or 70% egg production, the high layers had
significantly higher noradrenaline and lower adrenalin levels in the eggs compared to the
low layers (Moudgal et al., 1992). The values suggest that there was greater conversion of
noradrenaline to adrenalin, greater PNMT activity, in the poor layers. There is an increase in
PNMT activity during stress or after corticosterone treatment (Zachariasen and Nemcomer,
1975). Dopamine levels in eggs do not appear to be an indicator of stress (Moudgal et al.,
1992).

7. Stress

7.1. Definitions
An understanding of the relationship between animal production characteristics and stress

is important in issues of animal welfare and animals rights. As the keeping of poultry
progressed from small flocks for home consumption, to larger commercial enterprises, there
were major improvements in production traits. Housing costs were reduced by increasing
stocking densities, eventually culminating in the housing of hens in single or multiple cages.
As this occurred there was a real or perceived increase in behavioural problems associated
with housing layers.
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The United Kingdom Animal Welfare Council (Webster and Nicol, 1988) stated that
production systems should provide hens with:

1. freedom from hunger and thirst
2. thermal and physical comfort
3. freedom from pain and disease
4. freedom from fear and distress
5. sufficient space to exercise
The last of these has presently become a very controversial tropic. Intensive farming

practices often deprive animals access to conditions that allow for the performance of normal
behaviour. It has been considered that such deprivation leads to stress and a decline in the
animals well-being. The critical question becomes, does an animal suffer when prevented
from exercising a particular behaviour even when there appears to be no biological
significance to performing the behaviour? There is no clear criteria to show that the failure
to perform a behaviour is stressful to an animal. In any analysis a number of indicators
should be evaluated in determining the level of stress suffered.

A simple means of defining stress is to base it on the neuroendocrine response to
stressors, the final response of which is the release of glucocorticoids. Corticosterone is
widely used as a indicator of stress (Rushen, 1991). Corticosterone and the thyroid hormones
are physiological indicators of stress in the fowl (Etches, 1976; Beuving and Vonder, 1978:
Siegel, 1980). It has been argued that environmental stressors exert their effect on plasma
corticosterone through psychological influences (Dantzer and Mormede, 1983) and thus
might provide a measure of an animals wellbeing.

 Emotional stressors appear to be a more potent stimulator of stress than many physical
stressors (Mason, 1975). The two extremes in the reaction to fear are the active behavioural
response (fight or flight) or the passive response (conserve and withdraw). The active
behavioural response is associated with high neurosympathetic activity (catecholamines) and
low glucocorticoids, while glucocorticoids are high during the passive response (De Bore et
al., 1990; Fuchs et al., 1993). In two lines of hens selected for either high or low levels of
feather pecking (Bolkhuis et al., 1992), distinct differences in both the basal and restraint
initiated levels of catecholamines and corticosterone were observed (Korte et al., 1997). The
low feather pecking line had significantly higher basal corticosterone levels which were
further elevated after manual restraint. After restraint the high feather pecking line had
significantly higher noradrenaline levels. Hens with the shortest tonic immobility response, a
test for fearfulness, also had the lowest corticosterone response (Beuving et al., 1989).

Attempts to provide a totally stress-free environment may not be in the lifetime best
interests of the hen. An 'optimal' exposure to stress, especially in early life may be necessary
to provide a coping mechanism to handle environmental stresses later in life. An optimal
level maybe advantageous but there is no doubt that extreme stress is deleterious (Gross,
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1983; Creel and Albright, 1987). Limited daily exposure to heat early has been shown to
help protect hens during subsequent exposures in later life (Deaton et al., 1986).

7.2 Responses to stress
There are specific responses and nonspecific responses to stress. Specific responses

depend on the stressor. For example the response to cold involves huddling, increased
metabolic rate and changed blood flow patterns. Nonspecific responses are independent of
the stressor. There is a stereotypic pattern of physiological responses to stress involving
many organ systems. Non-specific response include increased blood flow, production of
glucose from glycogen which prepares the animal for 'fright-flight' reaction and these effects
occur in minutes and are catecholamine-dependent. A consistent non-specific response is an
increase in corticosterone which is an acute response and responsible for glucose production
from non-carbohydrate sources, principally protein. These changes are beneficial to the hen
and result in some level of energy expenditure. If the stress is continued for a chronic period,
however, then the corticosterone induced changes are detrimental to the hen. Pathological
consequences include; ulcers, hypertension, immunosuppression and effects can be
permanent after removal of the stress but if continued can result in death. Short term
stressors such as heat (Beuving, 1980), food and water deprivation (Beuving, 1980) transport
(Broom and Knowles, 1989) and fear (Beuving et al., 1989) give rise to elevated
corticosterone levels.
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Recent evidence suggests that the endocrine, immune and central nervous systems
interact and respond to stressors (physical, social or disease) in a coordinated manner. While
the interactions between the brain and endocrine system have been long recognised, the
participation of the nervous and endocrine systems in the regulation of immune-related
responses has only recently been appreciated. In turn, the immune system influences neural
activity and endocrine secretions. The bidirectional communication between the
neuroendocrine and immune systems appears to be mediated by neurotransmitters,
hormones, cytokines and receptors common to the three systems (see Kelley, 1988; Blalock,
1989; Arkins et al., 1993; Johnson, 1997; Johnson et al., 1997).  Furthermore, leukocytes
not only synthesize and secrete cytokines but also growth hormone, prolactin and insulin-
like growth factors. In addition to the cross-talk between the endocrine and immune systems,
there is also a dense innervation of lymphoid tissues allowing changes in central nervous
system output following environmental change to directly impact on immune function
(Felton et al., 1988; Ottway & Husband, 1994). The coordinated response of these three
systems during stress provides a primary example of how the brain-pituitary-immune axis
serves to integrate the homeostatic responses of the animal (Husband, 1995).



76

A key question for those concerned with poultry production is how well birds cope with
modern systems of animal management. Within its genetic capacity, an animal adjusts
continually to changes in environmental conditions or stress, but at a metabolic cost. The
effect of stress is an increase in endocrine-immune output resulting in the release of
hormones (particularly those of the pituitary-adrenal axis) and cytokines and a change in the
so-called “endocrine-immune gradient” (Elsasser, 1993). Metabolic changes following
alterations in the gradient represent a homeorhetic response which alters nutrient partitioning
away from growth and skeletal muscle accretion to metabolic processes which, during
immunological stress, support the immune response and disease resistance. Many cytokines,
such as interleukin-1, tumour necrosis factor-  and interleukin-6, act directly on target

tissues such as skeletal muscle, adipose, liver and bone and indirectly alter the circulating
levels of hormones such as growth hormone, insulin, glucagon and cortisol. In so doing, they
orchestrate glucose homeostasis, increase net protein oxidation, muscle proteolysis, nitrogen
excretion and net hepatic anabolism (Klasing, 1988; Johnson et al., 1997).  The net result is
reduced growth rate and increased fat deposition. The impact of these interactions on egg
production has not been examined.

Amino acid redistribution occurs during immunological stress, with muscle being the
major source of nitrogen. Some of the amino acids are used for B-cell proliferation and
synthesis of immunoglobulins, others provide the carbon skeleton for increased
gluconeogenesis by the liver whereas large quantities are incorporated into acute-phase
proteins. These aspects of protein turnover are accompanied by a significant nitrogen loss.
Calculations by Reeds et al. (1994) show that the amount of muscle protein mobilized is
considerably in excess of the quantity of acute-phase proteins synthesized due to demands
for phenylalanine, tryptophan and tyrosine.  The net loss of body nitrogen occurs following
the oxidation of amino acids remaining after completion of acute-phase protein synthesis
(Reeds et al., 1994). Research conducted with broiler chickens (Klasing & Barnes, 1988)
and pigs (Stahly, 1996) demonstrate that animals subjected to greater immunological stress
require less essential amino acids to achieve their decreased protein accretion rates than
animals not stressed. Similar studies have not been conducted with laying hens.

8. Animal welfare

8.1. Definitions
Animal welfare is a ".... term that embraces the physical and mental well-being of the

animal' (Brambell committee, 1965). An interest in welfare can stem from  numerous factors
and include economics, culture, philosophical attitudes, scientific, aesthetics, knowledge and
religion (Craig and Swanson, 1994). Attitudes to animal welfare vary greatly. Kellert (1988),
found that the attitude had a lot to do with the relationship that different professions had with
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animals. Farmers were utilitarian (interested in animals as resources), white collar
professionals were humanistic (animals as companions), naturalistic (concerned with
wildlife) and ecological (concerned with wildlife and environment). Organizations related to
animal matters have been categorised as concerned with exploitation, use, welfare,
protection, rights and liberation (Morgan, 1986).

While there are many possible definitions according to the individuals interest, perhaps
an appropriate general definition suitable to all interests is that of Hurnik (1988). "Animal
wellbeing (welfare) is a state or condition of physical and psychological harmony between
the organism and its surroundings characterized by the absence of deprivation, aversive
stimulation, overstimulation or any other imposed condition which adversely affects health
and productivity of the organism".

8.2. Indices of welfare
An assessment of welfare is difficult because it encompasses many factors, having

positive and negative input to the final state of the animal. It is a sum of all the factors that
impinge on the animal. Most definitions of welfare have been based of physiological
assessments and measurements based on health, production, behaviour and physiology
(Mench and van Tienhoven, 1986; Broom, 1991). Assessments of welfare rely on some
measure of change and change itself may not be a measure of stress as an animals behaviour
and physiology changes to maintain homeostasis. Any parameter provides only prima face
evidence that the animals welfare is compromised. The big question is how much change
signifies a risk to welfare? Measurements are often criticised with this question in mind and
also for the difficulties that measuring techniques cause in interpretation of the
measurements.

Health and productivity are not necessarily good indicators of welfare as they are often
based on a unit or group basis. While unit production or health may be high, individual
welfare could be poor for some hens. Based on an individual basis these indices can be good
measures of welfare. While stress can decrease production it doesn't mean that a decrease in
production is the responsibility of stress related causes.

Physiology and behaviour can be sensitive measures of welfare but with limitations.
Physiological responses are related to changes in the stress-axis. The results are elevated
heart rate, increased plasma corticosterone and catecholamine levels, adrenal hypertrophy
and atrophy, immunosuppression, changes in growth and reproductive hormones and
neurochemical changes (Freeman, 1976; Seigel, 1980). The difficulty with such measures is,
what is normal? An increase in stress hormones could be beneficial or harmful depending on
the duration and level of responses. One major difficulty is that often measurements are
made as point samples and this can lead to misleading interpretations of data.
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The concept that behaviour is a good indication of welfare is based on the premise that it
reflects how a hen feels (Dawkins, 1991; Duncan, 1993). This is extended to the notion that
if a hen has positive emotional experiences then its welfare is good and naturally the reverse
indicates poor welfare. It could be an inappropriate measure of welfare as the absence of any
behavioural pattern seen in the wild may not impinge on the welfare especially where other
activities could be a suitable substitute (Hughes 1980; Dawkins , 1988). Assessing emotional
state is difficult. There are three commonly used experimental means of assessing emotional
state (Mench, 1992); (i) deducing effective states during pharmacological or environmental
manipulation, (ii) preference testing: providing animals with choices and then assessing the
choices made and (iii) motivation testing: assessing an animals desire to perform particular
behaviours.

One of the major problems in assessing physiological responses to stress is that the
collection of information is often stressful in it's own right (Freeman, 1985). Non-invasive
measures could be helpful in identifying conditions responsible for poor welfare. Solomon
(1991) has stated that shell quality is a very good indicator of a hens harmony with it's
environment. Misshapen eggs or ones with calcium carbonate deposits are probably
evidence of disturbances to the hen. Microscopic observations of shell changes could be
useful indicators. Physical appearance, noise level and general behaviour are measures of a
hens wellbeing. Poor comb, ruffled or loss of feathers are indicative of stress.

It is unlikely that any single indice of welfare is adequate. Multiple indicators involving
health, behaviour, immune function, physiological measures of stress, productivity,
indicators of pain, fear and frustration would be a better assessment (Craig and Swanson,
1994).

8.3. Fear responses
The fear response can range from mild avoidance to extreme hysteria (Duncan, 1985;

Jones 1987). It would be only the extreme responses that are indicative of poor welfare as
the 'flight-fight' syndrome is part of the normal response of adjustment to a changing
environment. Frustration can be mild but if prolonged can lead to increased aggression
(Duncan and Wood-Gush, 1971 and stereotypic behaviour (Duncan and Wood-Gush,
1972a).

8.4. Restricted feeding
As a general husbandry practice broiler breeder hens are restrict-fed during growth and

laying. This improves egg production, fertility and lowers mortality (Hocking et al., 1987;
Hocking, 1990; Katanbaf et al., 1989). Also, the probability of multiple ovulations decreases
in proportion to the level of reduction in body weight at the onset of lay (Hocking and
Whithead, 1990). This practice has been questioned on welfare grounds.
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Hocking and colleagues (1993) studied the effects of feed restriction in broilers on
various physiological indices of welfare. By 12 weeks of restriction there was a significant
increase in basophils, heterophils and the heterophil/lymphocyte ratio (HLR) and a decrease
in lymphocytes. These changes were also associated with higher corticosterone levels at
some sampling periods. Corticosterone levels increase following feed restriction (Freeman et
al., 1981). There exists a positive relationship between the HLR and plasma corticosterone
levels (Gross and Siegel, 1983). It could be that the elevated corticosterone may not be
indicative of poor welfare but a metabolic response to feed deprivation.

Plasma activities of creatine kinase (CK) and aspartate transaminase (AST) are a measure
of muscle tissue damage (Lumeij et al., 1988) and can increase during stress (Meltzer 1968;
Tripp and Schmitz, 1982; Mitchell et al., 1992). The rapid growth rate of broilers is
associated with elevated CK and AST activity and this is probably associated with an
increase in muscle protein turnover. The effects are suppressed by restrict feeding (Hocking
et al., 1993). These workers found no evidence that limiting access to water was stressful as
long as water was available at the time of feeding.

Restrict feeding to 75% of ad libitium values resulted in a 73% increase in plasma
corticosterone levels but these were normal by 5 weeks of treatment. This suggests that the
birds could be adapting to the restricted intake (Freeman et al., 1981). However, restrict-fed
broilers show increased fearfulness (Van Niekerk et al., 1988) and increased rate of pecking
stereotypes (Savory et al., 1992). The effects of restrict-feeding might more stressful in
young birds (Nir et al., 1975; Freeman and Flack, 1980; Scanes et al., 1980).

9. Hens’ behavioural needs

Hens have behavioural needs (Hughes and Duncan, 1988) and the welfare components of
production systems are often assessed according to the opportunity for hens to express these
needs. The problem therefore becomes which behavioural activities need to be performed for
proper hen welfare. All behaviour is internally or externally stimulated. For example nesting
is internally stimulated because whatever the environment it needs to be performed.
Response to predators in externally stimulated, it is only preformed if their is a perceived
danger from a suspected predator. Dust bathing is stimulated by a complex interaction
between internal (Vestergaard, 1982) and external visual stimulation (Petherick et al., 1995).
A further complicating factor is that behaviour shows plasticity and so changes in behaviour
do not necessarily indicate poor welfare.

9.1. Nesting
Prior to egg laying, hens show a particular sequence of behaviour (Duncan, 1980).

Having access to some form of nest appears important to hens as they will work hard to gain
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access to nests (Duncan and Kite, 1987; 1989). Hens housed in cages without nests display
stereotypic pacing and increased aggression (Hughes, 1979) in the hour before oviposition.

9.2. Dust bathing
When supplied with appropriate material, hens will dust bath daily for around 30 min

(Vestergaard, 1980), the reason appears to be removal of excess oil from the feathers.
Preferences tests indicate that hens prefer environments with dust baths but they fail to exert
any great effort to gain access to litter (Dawkins and Beardsley, 1986).

9.3. Maintenance behaviour
Tail wagging, scratching, feather ruffling, wing-flapping and stretching are all behaviours

displayed by hens. The importance of not being able to perform these is difficult to assess.
Sleeping and individual rest is essential (Blokhius, 1984) with perching being the normal
position for such behaviour, however, hens seem to readily adapt to other positions.
Exploration is performed in extensive systems but the importance of such behaviour has not
been defined.

9.4. Feeding and drinking
It is obvious that both are essential. Cages limit the degree of foraging and other elements

associated with it. Hens appear to forage for at least some of their food (Duncan and Wood-
Gush, 1972b). There is no real indication that hens suffer if foraging is limited but aspects of
it especially pecking, may be directed towards other hens (Bolkhius, 1986). A problem that
can occur with drinking is if there is a sudden change in the water supply system.

9.5. Social behaviour
Hens show evidence of being social animals. Factors associated with decreased welfare

include mixing unfamiliar birds, rearing single sexes and limiting space for large groups. In
a study where birds were mixed daily there was increased immunosuppression, decreased
reproductive rate and body weight (Siegel and Gross, 1965; Gross and Siegel, 1973; 1981).
Social status could be important but there is no clear evidence for a relationship between
social status and corticosterone levels (Mench and Ottinger, 1991).

9.6. Space
Legislation to control space has mostly been on the basis of the space occupied by the

hen. This space is too small to perform all behaviours. Dawkins and Hardie (1989) estimated
that this requires areas of 893-1826 cm2/bird depending on the activity. Choice tests indicate
that hens prefer increased space allocation (Nicol. 1986). In general crowing decreases
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growth and egg laying, increases mortality, feather loss and is associated with adrenal
hypertrophy and increased corticosterone.

10. Husbandry influences on welfare

10.1. Housing
In recent times there has been an increased effort to assess the benefits and disadvantages

of various housing systems especially for egg producing layers. This has occurred because
of the public perceptions that housing hens in cages is detrimental to their welfare. Public
concern has directed administrators and researchers to assess the effects of housing on bird
welfare. Assessments of the effect housing-type has on welfare have been based on measures
of hen behaviour, comfort, health, environment, production, mortality and a number
physiological measures of stress.

10.2. Physical comfort and behaviour
Crowding will restrict hen behaviour by limiting the space available to perform activities

viewed as normal behaviour (Craig and Milliken, 1989). The allocation of space is minimal
in caged-systems. A medium size hen occupies a space of around 600 cm2 (Dawkins and
Hardie, 1989) and so any system that recommends space allocation less than this would
cause some measure of feather compaction. Alternative floor systems allow for an increase
in bird space, deep litter 11/m2 (Appleby et al., 1988), strawyards 6/m2 (Gibson et al.,
1988). While these alternative floor systems have a lower mean density, the actual density
can be high at various times.  Clustering can result in densities of 30 birds/m2 (Gibson et al.,
1985). Cage height is also of importance, the often recommended height of 35-40 cm is
insufficient.

The importance to a hens welfare of free movement to perform behaviours associated
with egg laying, dustbathing, scratching, pecking, wing flapping and stretching is difficult to
measure. The activities of hens removed from cages suggest that the space restriction of
cages causes frustration (Nicol, 1987). To Wood-Gush (1972) the prelaying behaviour of
some hens in cages suggests a level of frustration.

Fearfulness is greater in caged birds (Rutter and Ducan, 1989) but the incidence of
aggressive episodes is greater in floor systems (McLean et al., 1986). Aggression tends to
decrease as the stocking density increases (Hughes and Wood-Gush, 1977). Feather pecking
is more prevalent in barren environments and so higher in cage systems (Blokius, 1989).
Feather pecking can progress to cannibalism which is more prevalent in floor systems
(Appleby, et al., 1989). Floor systems made of total slats or wire frequently are associated
with a high incidence of feather picking and hysteria (Blokhius, 1989).
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The absence of dust bathing, scratching and pecking associated with cages is often
assessed as a welfare problem (Vestergaard, 1982). The non-cage systems allow hens a
greater degree of expression for these behaviours (Gibson et al., 1988; Appleby et al., 1988).
Litter systems allow for dustbathing, scratching, improved foot condition and decreased
levels of feather picking and provide nest boxes. Free range systems provide a variety of
stimuli although some hens never leave the hen house.  Perches of an appropriate design can
improve foot condition and bone strength and allow vertical space to be used more
effectively (Duncan et al., 1992).

10.3. Group size
This is different to density. For cage systems stress level has been reported to increase as

the group size increases (Mashaly et al., 1984; Roush et al., 1984). Small group sizes show
increased production levels, less aggression and hysteria (Hughes, 1975: Robertson et al.,
1989). For large group sizes in floor systems subordinate hens are often attacked (Gibson et
al., 1988). This could involve failure to recognise individual hens in large groups as
introduction of strangers into a group results in increased aggression (Craig et al., 1969).
Appleby and colleagues (1985) suggest that individual recognition is limited to groups of
around 80 hens.

10.4. Beak trimming
Break trimming is an important welfare issue. Cannibalism can be a major cause of

mortality and trimming has been reported to decrease mortality rates (Glatz, 1990). For
untrimmed hens, mortality rate of 4-9 % for litter housing and 4-5% for caged systems have
been reported and these decrease to 2-3 % following beak trimming (Appleby et al., 1988).
Trimming does not decrease the incidence of pecking but does reduce the injury resulting
from pecking (Craig and Lee, 1990; Craig and Muir, 1991; Lee and Craig, 1990). There is
evidence to indicate the trimming causes chronic pain (Cunningham, 1992; Breward and
Gentle, 1985) and short- and long-term behavioural changes suggestive of pain (Lee and
Craig, 1990; Duncan et al., 1989b).

11. Hen health and husbandry

11.1. Environment and disease
As the environment in which hens are maintained changes, the pattern of disease changes

(respiratory diseases are more prevalent in intensively managed systems). Disease problems
associated with extensive systems are often husbandry problems rather than health problems
(Ashton, 1988). Stressors such as air quality increase a hens susceptibility to primary
infection, especially from viruses. Air borne contaminants become more critical in floor
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systems where increased dust, bacteria and ammonia levels can have detrimental effects on
health. Hens breathing contaminated air have increased levels of lung lesions (Maxwell et
al., 1989), fluid accumulation in the lungs and lower blood oxygen levels (Oyetunde et al.,
1978 ).

11.2. Tissue and bone damage
Feather loss is greater in caged systems than floor systems (Appleby, 1988). This is

partly due to an increased incidence of abrasion but like all systems mainly due to pecking
(Hughes, 1985).

Old hens housed in cages, have low bone strength and can have high levels (30-50%) of
bone breakage during catching, handling and transport (Gregory and Wilkins, 1989). Tibia
bone strength can be 19-42% greater in hens housed on the floor compared to those in cages
(Rowland et al., 1972; Meyer and Sunde, 1974). Perches placed in conventional cages
increased bone strength (Hughes and Appleby, 1989). The production costs associated with
using perches include increased numbers of broken eggs and reduced egg mass (Tauson,
1984). Damage due to trapping of body parts is greater in caged systems (Tauson, 1985).
Wet litter can cause increased foot problems in floor systems (Hill, 1986).

11.3. Nesting
In cages hens often display increased frustration at prelay and this suggests that there is

inhibition of behaviour (Mills et al., 1985). Cages provide inadequate opportunity for nest
building and this may be more important than actually having a nest site. Attempts have
been made to modify cages so they incorporate a nest but these have had limited success
(Wegner, 1990; Appleby, 1990).

11.4. Dustbathing
Wiepkema (1989) strongly believes hens should have access to dustbaths. When hens are

prevented from using dust baths their motivation to use dust baths increases (Vestergaard,
1982, Van Liere and Bokma, 1987). Hens in cages display dustbathing as a vacuum activity.
It is stimulated by the presence of litter but it is unclear whether the activity is performed
satisfactorily without substrate being present.

11.5. Stockmanship
Handling is a potent stressor with corticosterone levels raising within 60 sec after

immobilization by hand (Craig and Lee, 1990). Physical handling can have a positive or
negative affect on growth (Gross and Siegel, 1979; Freeman and Manning, 1979; Collins
and Siegel, 1987). The likely effects are related to the nature of the relationship, level of fear
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and the consequent effects on production. Fear of humans has been reported to account for
21% of the variation in hen day egg production (Hemsworth and Barnett, 1989).

12. Physiological measures of welfare

Management conditions influence plasma corticosterone levels (Edens et al., 1982;
Mashlay et al., 1984; Koelkebeck and Cain, 1984; Gibson et al., 1986). Of three different
housing systems, cages, strawyards and free-range, hens in cages had the highest circulating
plasma corticosterone concentrations (Gibson et al., 1986). In the same study levels of T4
were not affected by the housing system but T3 levels were significantly lower for the free-
range hens compared to the caged hens. The T3 levels maybe a response to temperature
differences in the different housing systems because T3 is a regulator of metabolic activity in
hens (Klandorf et al., 1981). During cold exposure T3 levels are elevated (Sharp and
Klandorf, 1985). Alterations in floor space or 'personal space' can elevate plasma
corticosterone (Mashaly et al., 1984; Crompton et al., 1981).

Short term stressors such as heat (Beuving, 1980), food and water deprivation (Beuving,
1980) transport (Broom, 1989) and fear (Beuving, 1989) give rise to elevated corticosterone
levels. Corticosterone levels are elevated when the space allowance is below 400 cm2/bird
(Craig et al., 1986) The effects of space allowance can be influenced by temperature (Edens
et al., 1982). When space allocation is adequate there appears to be no difference with
individual or group housing (Koelebeck and Cain, 1984).

13. General summary

There have been great improvements in livestock production in general but especially so
in the intensive industries associated with poultry production. Over the last 30 years
improvements in genetic selection, nutrition, management, and disease prevention and
treatment have had a positive influence on the well-being of hens. The intensive confinement
systems used in egg production are associated with perceived welfare problems and these
include disruption of social attachments, restriction of movement and the consequent failure
to perform behavioural traits, human-animal interactions and lack of environmental
stimulation (Wood-Gush et al., 1975).

The intensive management of hens for egg production has caused a sector of the public to
become increasingly concerned with the welfare of hens. These concerns need to be
considered and it is important to identify and define what constitutes a contented hen. The
consequences of deprivation or overstimulation are often quite subtle and difficult to observe
and quantify (Ewbank, 1988). Animal behaviouralists have made efforts to improve methods
of assessing behavioural needs of hens and to determine  how particular production systems
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interact to provide or deprive hens of these needs (Hughes and Duncan, 1988).  However
good these determinations are, they still have limitations. What is required is an entirely
objective, quantifiable indicator which unambiguously reflects a hens well-being.

It is clear that stress has many physiological consequences and for some of these there are
definable changes in plasma constituents. Stress results in elevated heart rate, increased
secretion of catecholamines and glucocorticoids, adrenal hypertrophy and atrophy,
immunosuppression, changes in levels of reproductive and growth hormones and
neurochemical changes (Wiepkema and Van Adrichem, 1986). Assessment of these changes
could provide a means of measuring stress levels in hens but there are inherent problems
associated with making such measurements and include:

1. Changes in chemical indicators are responses to noxious stimuli and the assumption is
that the absence of any change is indicative of the hen not being subjected to stress. This is
not necessarily correct.

2. Alterations in chemical indicators could be a response by the hen to normal
environmental changes and reflect adjustments to diurnal influences or a hens efforts to
maintain homeostasis.

3. Handling birds when collecting samples may induce a response to a noxious stimuli
which is not indicative of the background well-being of the hen.

4. The difficulty of measuring some of the changes.
Many of the stresses to which a hen is subjected result in activation of the HPA-axis. The

final consequences are, changes in plasma and tissue levels of glucocorticoids and
catecholamines, secreted by the adrenal gland (Harbutz and Lightman, 1992). Co-ordination
of neurosensory stress signals in the brain results in the release of neurotransmitters that
inturn stimulate the release of hypothalamic releasing factors which act at the pituitary to
stimulate the release of ACTH. In the circulation ACTH acts at the adrenal to stimulate
corticosterone release. As part of the general adaptive response to stress, corticosterone
increases gluconeogenesis and blood glucose, causes catabolism of muscle tissue, increases
fatness and decreases immunological function. The last of these effects results in increased
susceptibility to diseases and this is especially important in intensive housing systems. As
part of the short-term ‘flight or fight’ response of hens to acute stress, the catecholamines are
released from the adrenal gland. These hormones are released in high concentration in a
matter of seconds following perception of a noxious stimulus. The major function of the
catecholamines is to mobilise energy reserves to assist the hen to evade the stressor.

Not much is known about the physiological levels of the “stress” hormones in the hen.
There are difficulties with the interpretation of circulating concentrations of hormones
because of diurnal patterns and the rapid changes that occur in response to handling and
blood sampling. These problems have been reduced by using non-invasive means of
measuring levels of stress hormones. For some species, hormone levels are assessed in milk
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and saliva. It is apparent that the secretory products of animals contain a wide range of
growth factors and hormones which vary in concentration according to the physiological
status of the animal (Prosser et al., 1991). Saliva contains cortisol among other hormones
and the concentration is closely related to the degree of stress (Feel et al., 1985).

Of increasing concern to the egg industry is the growing public perception that the laying
hen exists in a state of chronic stress for the duration of its productive life. At present there
are no practical means of accessing stress in hens other than behavioural observations, which
do not provide accurate determinations of well-being as discussed earlier. Adrenal hormone
levels can be determined in blood but the actual blood sampling procedure compounds the
results. Could the egg provide a non-invasive means of measuring acute stress levels in
hens?

The diffusion of plasma constituents into egg white has received little attention but as the
degradative metabolites of vitamin D are found in albumen (Fraser and Emtage, 1976) it is
likely that other plasma solutes are also sequested into the albumen. The gradual
accumulation of albumen over 6 hours during egg formation potentially provides a very
accurate and integrated reflection of circulating hormones over this period. Determination of
stress hormone levels in egg albumen could provide a non-invasive measure of acute and
chronic stress in hens.

The new understanding now emerging regarding the integration of endocrine and
immune responses to stressors suggests opportunities for intervention by nutritional
strategies or by manipulating hormone and/or cytokine responses (Husband & Bryden,
1996). Only through a more complete delineation of the stress-induced perturbations in
metabolism will we be able to determine which interventions are consistent with enhanced
animal production and welfare. This will not be easy given the difficulties associated with
developing appropriate stress paradigms as duration of stress is often brief and animals may
encounter a number of stressors concurrently. Moreover, the task is more complicated as a
change in voluntary food intake is an initial response as animals adjust to new environmental
conditions or stress. Despite many years of research (see Forbes, 1995) our understanding of
food intake control is incomplete. Since the acquisition and assimilation of nutrients is
critical to survival, it is not surprising that this well regulated process is complex and subject
to multiple levels of control.
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